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Systematic weakly nonlinear analysis of radial viscous fingering
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We present a weakly nonlinear analysis of the interface dynamics in a radial Hele-Shaw cell driven by both
injection and rotation. We extend the systematic expansion introdudéd Alvarez-Lacalleet al, Phys. Rev.
E 64, 016302(2001)] to the radial geometry, and compute explicitly the first nonlinear contributions. We also
find the necessary and sufficient condition for the uniform convergence of the nonlinear expansion. Within this
region of convergence, the analytical predictions at low orders are compared satisfactorily to exact solutions
and numerical integration of the problem. This is particularly remarkable in configuratiithsno counterpart
in the channel geometnffor which the interplay between injection and rotation allows that condition to be
satisfied at all times. In the case of the purely centrifugal forcing we demonstrate that nonlinear couplings make
the interface more unstable for lower viscosity contrast between the fluids.
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I. INTRODUCTION experimentally{ 25—-27 and also theoreticall{28—-31].
A basic and important feature distinguishes the radial ge-

The evolution of an unstable fluid interface in a Hele- ometry from the channel one. In the former, the injection and
Shaw cell[1,2] has been widely studied, both theoretically the rotation forcings are not equivalent due to the different
and experimentally. While it exhibits the inherent difficulties dependence of viscous and centrifugal forces with radial dis-
of a free-boundary problem with nonsaturated, nonlinear, ant¢ance. Injection and rotation drivings thus give rise to differ-
nonlocal growth, yet it is simple enough to allow for analyti- ent interface dynamics and the problem involves three di-
cal insight[3—6]. The channel and radial geometries are themensionless parameters. Viscosity contragt and
two basic configurations. dimensionless surface tensi@nare now supplemented with

In the channel geometry the interface between two fluidshe ratio of the two driving forces. It has been shown experi-
is driven by an external pressufwith different viscosities of mentally that complicated finger morphologies appear due to
the fluidg or by gravity(with different densities[2,3,7]. The tip-splitting and screening effecf23,24 when injection is
gravity-driven and the pressure-driven problems can behe unique destabilizing force. On the contrary, a purely cen-
mapped into each other in the appropriate reference framesifugally driven experiment leads to a different morphology
leaving only two dimensionless parameters, viscosity conef the fingers and the enhancement of pinch-off singularities,
trast A and dimensionless surface tensi@n A thorough  especially when the viscosity contrast is [¢25,32.
study of the problem in channel geometry has been pursued The rich experimental phenomena and the specific fea-
since Saffman and Taylof3] explained the instability tures of the radial geometry indicated above suggest the rel-
mechanisms and obtained the analytical shape of steady fievance of extending to this geometry the weakly nonlinear
ger solutions forB=0. In particular, the singular perturba- analysis of the viscous fingering problem developed in Ref.
tion character of surface tensi¢B] has been identified as [33].
source of different subtle effects. The most celebrated one is The main reason for developing the weakly nonlinear
the mechanism of steady-state selectj®r-11], but more analysis is the possibility to extract analytical information
recently, surprising singular effects on the dynamics of fingexhich is not perturbative in the relevant parameters of the
competition have also been unveilgtRk—16. On the other problem. For instance, the region of finiB which is rel-
hand, viscosity contrast also plays an important role in thesvant in the typical configuration emerging from the linear
fingering dynamics. For instance, it has been demonstratedstability, can be explored naturally although, in the un-
that the finger competition is inhibited when the viscosity stable configuration, the analysis is limited to a transient. The
contrast is low[7,17—2Q and that consequently, the basin of interplay of rotation and injection in radial geometry can also
attraction of the single-finger solution does depend on visbe best understood by analyzing how the corresponding
cosity contras{21,22. terms interact in the early nonlinear regime. Similarly, the

The radial configuration has also been object of intensiveveakly nonlinear analysis provides explicit nonperturbative
experimental and theoretical analysis. In the typical radiainformation about the connection between centrifugal forces
configuration[23,24], the circular Hele-Shaw cell is filled and viscosity contrast at the nonlinear level in the purely
with two fluids. The less viscous fluid is injected at the centercentrifugally driven case.
of the cell and displaces the more viscous one. The interface Remarkably enough, in the radial geometry one can find
is unstable due to viscosity contrast, as in the pressure-drivesituations which combine rotation and injection in such a
channel instability. To provide an instability independent ofway that the early unstable growth is stabilized at long times.
the viscosity contrast in radial geometry, a counterpart of thét is then possible to apply the weakly nonlinear analysis to
gravity-driven experiment is realized by introducing a cen-the entire interface evolution, giving rise to a reduced de-
trifugal force. This situation has been extensively studiedscription of the whole Saffman-Taylor dynamics in terms of
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a set of ordinary differential equations. This situation has no
counterpart in channel geometry.

Finally, the weakly nonlinear analysis is also relevant in
the analysis of a stably stratified interface which is driven by
an external force such as modulations of the gap or of the
wetting condition(see Ref[34] for quenched disorderSpe-
cifically, the information provided by the weakly nonlinear
analysis in channel geometry has already proven useful in
morphologically stable interfaces subject to a local forcing in
the form of random cell gap variation85]. In such cases,
the lowest order of the nonlinear terms is required to obtain
the long-wavelength, low-frequency scaling properties of the
interface fluctuations. While nonlinear couplings that are lo-
cal in space are relatively easy to obtain, this is not the case
for nonlocal terms. The weakly nonlinear analysis is then a
useful tool to obtain the complete set of nonlinearities to the
desired order, to discuss, for instance, the universal proper-
ties of interface growt35]. The present analysis will be
useful to extend these studies to the radial geometry.

The aim of this paper is to work out the details of the _ o
expansion in radial gegmetry. We will explicitly carry out the FIG. 1. Sketch of the rotating Hele-Shaw cell in circular geom-
nonlinear expansion up to second-order couplings, includinéstry'
both rotation and injection, which extends the result of Ref. ) ) )

[36] to the case with rotation. We will extract analytical in- ~ The equations of motion for the interface and the bound-
formation concerning the interplay between injection, rota-ary conditions are well knowri3]. Following the same
tion, and viscosity contrast at different orders of nonlinearaPProach as that in Ref33] and using the formulation of
couplings. We will also be interested in obtaining an exacfTryggvason and Aref 7], we introduce velocityU = (u,
criterion of convergence of the nonlinear expansion in thet Gz)/z Whereﬁl and Jz are the two limiting valuegfrom
radial geometry, extending the analysis of the channel geonpoth sides of the interfagef the solenoidal part of the ve-
etry. locity at a given point. This velocity) can be expressed in

The. approxmate evqutlon obtalneq W'th the _nonhngarterms of vortex sheet distributiop at the interface as
analysis will be compared with numerical simulations with

finite surface tension. The nonlinear expansion is also ap- U;=U(y,t)-F
plied to the zero surface tension case which is special in that
explicit time-dependent solutions are known, even for the 1 2m rasin( ¢pp— 1)
combined case of rotation and injectip29], and therefore =5 > 2
provide an additional ground for testing the method. Some of ™ Jo rytry—2rr,cos ¢y ¢1)
the physical anomalies of such solutions will be clearly (2.1
manifested within the weakly nonlinear scheme.

The layout of the rest of the paper is as follows: in Sec. Il R R
we introduce the formalism and obtain the weakly nonlinear Uj;=U(¢q,t)- ¢
equations for Hele-Shaw flows in radial geometry. We also 5
address the convergence criterion in this section. Its math- 1 JZW rir—r;co8 ¢~ 1)

= 2, 2
0 ri+ry;—2rir,cod ¢~ 1)

ematical proof is given in Appendix. Section Il presents a T2
numerical analysis of exact, simulated, and approximate so-

lutions. The main results and the conclusions are summa- (2.2
rized in Sec. IV.

Y(p)de,,

V(o) deps,

wherey=11+(r,/r)%(u;—uy)-s, and we have used nota-
tionr(oq,t)=rq, r(p,,t)=r,.

In the presence of sinks or sources, velociﬁ@sand JZ

A. Vortex sheet formalism in radial geometry which defineU include only the solenoidal part of the total

Let us consider the Hele-Shaw problem in the radial geVvelocity field. For this reason, when injecti@>0 or with-
ometry. The initial interface is a constant cirée=R, which ~ drawalQ<0 of the inner fluid is present, Eg&.1) and(2.2)
separates an outer fluithbeled 3 and an inner fluidlabeled ~ must be supplemented with the corresponding irrotational
2), which have known dynamic viscositigs;, x, and den- ~ part of the velocity field.

Il. WEAKLY NONLINEAR EQUATIONS

sitiesp;, p,. The gap between the plateshisQ is the areal In order to obtain the expression for the vorticity as a
injection rate, and is the angular velocity of the celFig.  function of u;, we use Darcy’s law for the gap-averaged
1). velocity [25]:
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The largest length scale in the problem is given Rit),
which is a constant whe®=0. For finite injection rate,
R(t) defines an evolvindunstabl¢ solution. We could na-
ively define ¢ as e=w/R, w being the typical scale of
r(¢,t). This straightforward generalization of the scaling
procedure used in the channel geometry is not appropriate
here. The reason was already pointed out by Miranda and
Widom [36]. In the radial geometry, mass conservation im-

After some algebra, we can write an expression for the vorplies that the zero mod@vhich, in the channel geometry, is

ticity as a function ofU:

~_b2 20
Y121 (ut o)
_ b_2 292(P2_P1)

12 pitpe

r
¥ ¢
K¢+2Au-( : ,1)+2A T

2
Mg (2.5

with the curvature and the viscosity contrast as

decoupled from the rest and drops out of the formulation
has a higher-order nonzero amplitude, since it must satisfy a
mass conservation relation which, to lowest order, reads:

1
— 2
d0= 51 go |82 (2.10

Since the zero mode is explicitly one order higher than the
others, we must consider a scaling that does not mix different
orders of the weakly nonlinear analysis. We use the follow-

ing scaling:
_(Prarg—rryy) s 26 g d
(r2+r3)%2 7 p1t po r(¢p)=R[1+er(¢)], (2.1
We now impose the continuity of the normal velocity. The with
projection of the radial velocity along normal directiorhas .
two contributions: the solenoidal part of the average velocity, 1(9)=T(p)+ero, (212
U, and the irrotational part of the mean interface VeIOCity'wherero stands for the zero mode afifkh) is the sum of all
Uirrot : the other modes. To simplify the notation we have dropped
out the time dependence.
ar . - . = . dr r Q We define the characteristic scaling velocity as:
~ b :
ar~n=U-n+Ui,,ot-n—> E:Uf_TU‘f’—’_ﬁ' g y

(2.7

Equations(2.1), (2.2, (2.5, and (2.7) are the dynamic

equations for an interface with no radial overhangs.

B. Systematic weakly nonlinear analysis: Radial geometry

1
Mot g

Q b>
%—R(Mz—ﬂl)—l—zﬂ (p2—pP1R],

(2.13

implying that time will be scaled witlR/V. Once Eqs(2.1),
(2.2, (2.5, and(2.7) are made dimensionless, we have

Our goal in this section is to introduce a systematic « er c
method to derive an evolution equation of the interface in 3,:25 ¢ 1oAU- ;‘b,l) +28(——D) rs
real space, up to a given order in nonlinear couplings, in the 1+er 1+er (1+er)? -
radial geometry. As in Ref33], the different orders of mode (2.14
couplings will be ordered as powers of a “book-keeping” o
parametee, to be defined below. The evolution of the inter- for the vorticity, where
face will thus take the following form:

b2 o QA
dr B=1 20 ST 2RV
a=F[r]+aG[r]+~-~, (2.8 (u1+ u2)VR
2 2
where F[r],G[r], ... are nonlocal operators on function D= b_M
r(¢,t), including nonlinearities of order+ 1 in the term of 12 (1t m2)V
ordere".
To define small parameter, we first split functiorr (¢,t) (1+£L)2+ Zszﬁ,—s(lJra[)LM
in two parts, namely, the radius of the unperturbed circle and K= [(1+er)2+e2r2]3?2 . Ap=pr—ps.
the deviation from this circle: ~ —¢

(2.19

Qt B is the dimensionless surface tensi@his th led injec-
_ [o2, Qt _ s the scaled injec
r(¢.) Rot T Fr(¢D=RO+(4H. (2.9 tion, andD the scaled rotation. For the integrals we have
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1+28r2+82r§ -
Y(¢2,1)des, (2.16

[1+ef(p1,d2)+e%0(b1,b2)]

1 27
Ur(4)= 47Trf0 tar( br— b1
2

1 f2”1+8f(¢1a¢2)+82[1[2_(1+28[z+ Szﬂg)coifﬁz_ h1)~

Uy(d)=—P — Y(¢2)des, (2.17)
e 2sir?(¢22¢1 [1+6f($1,62)+2%0(¢1,62)]
|
with 1 27 , o' — ¢ ,
( . H¢[f]=szo f(o )cot( 5 )dd) , (2.2)
rh=r;
Hbr¢)=I1tT2, 9(d1,42)= ho— by Thlar where subindex in operatorH indicates the argument of

4sir? 2 the Hilbert transform, not a derivative. The zero orders of
(2.18  vorticity andU are:

and the dimensionless equation for the evolutiom @f) is - 0 o ¥ 1 -
Y(O)IZAU(;/,), UE;,):T, U§0)25H¢[7’(0)],
dr dro r¢U€b Q (2 22
4 g2~ =U.,—g= —(1—-¢2 ’
Cat T At VT ¥ Irer T 2aRV| 1rer (LT E T
- - and thus
2.19
Y0=A35°. (2.23

This last Eq.(2.19 is the only one which is sensitive to

the different scalings im(¢). This equation has a time de- This is different from its counterpart in the channel geometry

rivative which produces different results depending on hOW[33]. Here, the equations for the vorticity at consecutive or-

R(t) is involved in the scaling. The scaling that we Propos€qeq g require the knowledge of the average vorticity. The

is the only one that' is t_ruly'systematlc. Other possibilities areequations are solved by averaging on both sides. For ex-
not incorrect but will mix different orders of the weakly non- . ~(0)
ample, at zero ordeA#1 will lead to y**’=0 but for A

linear expansion at a given order én -

Finally, to complete the theoretical analysis we address=1, ¥'”) can be any constant. The presence of an arbitrary
the convergence of the weakly nonlinear expangb@. For ~ constant is not a problem, since it is eliminated at each order
the channel geometry’ we showed in R[QS] that the ex- in the equation for the evolution of the interface.
pansion ine converges uniformly if and only ifh,|<1 in Expanding the equations up to first order and usjfy)
the whole domain of integration. Here, we find a similar =0, the linear equation for the evolution of the interface
condition in terms of nonscaled variabieWhenever an in-  deviation reads
terface fulfills

dr Q

—_—yuyW— ~:}H ["7‘,(1)]_L~ (2.249
r24+12<2R?, (2.20 dt_ f 2RV 2¢ 7RV &

the nonlinear expansion converges uniformly. This result iéNith
proved in Appendix and it reduces fh,|<1 in the limit of ~()_  omr .
channel geometryR— ). This result provides a practical Y= T 2B(T+T4) ¢+ 2(C=D)Ty. (2.29

criterion to assess the validity of the expansion in differentys can now perform a Fourier transform of the equations
situations. and, after reintroducing the adequate dimensions, we repro-
duce the linear dispersion relation found in R&b]:
C. The linear dispersion relation

W . . . . . . b? Q2Ap QA
e want to obtain the linear dispersion relation, in both AK) = —= _ K|
real and Fourier space, to discuss the interplay between ro- 12 p1tus  27R2
tation and injection at the linear stage of the instability.
We will use the following definitions for the average and b? o 2 Q
the Hilbert transform of a functiofin the unit circle: " 12R® M1+M2|k|(k - 2R (2.26
F= ifzwf((ﬁ)dd), We now return to the question of the different scaling
2 Jo alternatives introduced at the end of Sec. Il B. Had we used
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scaling e =w/R?(t), term Q/(27R?) in Eq. (2.26 would d? dr
have disappeared before reintroducing the dimensions. On TR _0(8 O +e
the contrary, fore=w this term becomes multiplied by a
fa_mctor 2. _These changes in the dimensionl_ess Iinear_disper- FTH [Sg 1+ AH[H 4 [(TSyr) 4]
sion relation come from the fact that a maodlein the scaling _
adopted in Eqgs(2.11) and(2.12 becomess, /R in the first —AHY[TH 4 [Syrgr]+T 5 Hyr[S4]1]
of the scaling alternatives above. Q

TermQ/(27R?) at the end of Eq(2.26) is stabilizing for 2 RV~2)
positive injection rate @>0) and destabilizing foQ<0. In ™
a sense, this is a purely geometric effect, which contributes
to the growth or decay of modes due to the expansion oM ith
contraction of the base state. As pointed out in R28], 2
term Q/(27R?), that can be scaled out, must be distin- K(2)=T‘2+r—¢+2‘r”
guished from the other terms that describe the intrinsic insta- 2 ¢
bility of the problem. Disregarding that last term, it is clear (2.32
that injection and rotation@V, andDV,, respectively play
an equivalent role in the linear dispersion relation, since both By introducing a superposition of Fourier mode<rimve
appear multiplied bk. By choosing the proper viscosity and directly recover Eq.(2.27 for mode k=0. For the other
density contrasts, they can produce exactly the same stabilifaodes k#0) we get the following result:
ing or destabilizing effect. This is the counterpart, in the
radial geometry, of the equivalence between the roles of in-

C+D

(2) =2
Hd’ BK¢,_ 2 (I’ )¢/

(2.3)

Sy=[B(F+T 44)+(D—C)T],.

jection and gravity in the channel geometry. In the channel =N (k) 5k+p;)’k 9p0ic—plF(k,p) =S(k,p)
geometry, however, the equivalence is exact and can thus be
extended to the whole nonlinear evolutitn the appropriate +A(p)JI(k,p)], (2.33
reference framke This is not the case in radial geometry, as
shown in the following section. where
i i k Al b? Q2A
D. First ?/veakly-nonl-lnear ord-er | F(k,p)= % (——sgr(kp)) = p
The purpose of this section is to derive the leading non- 2mR? pitpa|’
linear contribution for the radial Hele-Shaw cell with both (2.39
rotation and injection. We first recall that mass conservation
relates the zero mode with the other modes. In the original S k|| b2 o (1 p 3
nonscaled variables this reads (kp)=5 1R pat 12, 5 (k+3p)

(2.35
Q. 1E|5k|2x<k>. (2.27)

.5 =

TR RE 1
_ _ _ J(k,p)=— glAK(1-sgnkp)+1], (236
To reproduce this result and the nonlinear couplings for the

other modes we start with the equation for the interface at
orders?: where sgn) is the sign function. For the particular cafe

=0, the expression above reproduces the result of Miranda

dT dro

_ 0
TS =0(e”)+elU

Q
(2)+ 57RV 2], (2.28 not change the formal structure of the equations.

fine quantityH (k,p) as the part of the coupling matrix in the

W _ O O 70 _3(0)— . - . :
where we f21ave used thak,"=U ;" =U"=y"=y"=0. right hand sidgrhs) of Eq. (2.33 which containsQ and/or
Velocity U( ) can be obtalned from the expansionlgf: Q. This quantity reads:

1 1
UP=SHJ YD1+ ZHAT =T @29 K[ QA b° 0%p

2R\ 27R? 12p1tuo
where

3ol b2 Q%?Ap QA Q
=28k 28Tk W+ 24T UM+ 2AUL) - 4CTT,. PPN 2 070~ 20r2)  2aR8

x? anduff) can be computed from Eq&.15 and(2.17),
respectively. The latter involves only*). We obtain finally  groups, namely,
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_ b2 02Ap _  OA tepsion problem may be dramaticglly different f_rom the regu-
0= 1 , Q= > (2.39 larized one even for smooth nonsingular solutions.
patt 27R These series of results point out precisely to the necessity

of having analytical tools that are nonperturbative in surface
Both of them turn out to multiply the same functions of the {€NSion, such as the present weakly nonlinear analysis. A
wave numbers, except for changes in sign. However noticdetailed study of the small surface tension limit is obviously
T = U ’ beyond the scope of the present paper but we will illustrate
that the relative sign ofl andQ is different in the linear part Y b b pap

din the leadi i + of the d . how such pathologies of the integrable dynamics show up in
ancln .de ca 'tr;]g non meaLptaL of ?h ynam|c§. i the systematic nonlinear analysis, in an example.
onsidering the approach faken In the preceding Seclion, - - ,hqiqer the exact solutions of high viscosity contrast

where only the morphological instabilities are taken into aC-EA: 1) discussed in Ref29] and first obtained in Ref.

count, there are only two important parameters in the linea . .
L . . 30], based on the conformal mapping formalism. The solu-
regime: viscosity contragt and ratioB/(C+ D) between the tion]s are written in the form ppIng

capillary forces and the sum of the injection and rotation

forces. On the contrary, the weakly nonlinear solution shows 1

that another important parameter must be taken into account, flw,t)= Z[aO(t) +ay(Hhw"], (3.9
namely, coefficientQ/{). The overall dynamics presents

three different parameterd, B/(C+D), and C/D. This  wheref(w,t)=z=x+Iiy is an analytical function inside the
clearly shows that the effects of injection and rotation are notinit disk in thew complex plane, which maps the disk onto
equivalent, and that the intrinsic dimensionless parameter rene viscous fluid domain in the physical plane. The interface
lated to rotation already shows up at the early nonlinear reis obtained in a parametric form by setting=e'? (with 0

gime. < #<2m). Real functionsgy(t) anda,(t) satisfy
Finally, notice that at nonlinear order there is also a geo-

metrical termQ/(27R®) independent ok. This term cannot ) ) Q N ot
be scaled by the same procedure used at the linear order wifto(t) ~(N—1)an(t)= —t+ko, ~ ap(t)=knan(t)ao(t)e™.
analogue tern®Q/(27R?). 3.2

Constants of motiork,, andk,, are fixed by the initial con-

Ill. ANALYSIS OF EXACT SOLUTIONS AND THEIR ditions. The injection Q>0) destabilizes the interface and
WEAKLY NONLINEAR APPROXIMATIONS the rotation O) is stabilizing.

We proceed to compare the approximate results that the It is important to recall the basic properties of this family
weakly nonlinear equation€q. (2.33] provide, with exact Of solutions. The interface described by E§.1) presents
solutions of the full problem obtained analytically or numeri- nfold symmetry and its Fourier expansion contains only har-
cally. Our purpose is to gain further information about themonics of the basia mode. Ifa,/a, is small, the amplitude
implementation of the weakly nonlinear analysis and to disOf modek=n satisfiesd,-,~a, and the harmonics are hi-
Cuss its accuracy. erarchically ordered asy_,,~ 62, S_zn~02, ... . Fur-

We will focus on three comparisons. In Sec. Il A we will thermore, these solutions can present finite-time singularities
check the weakly nonlinear analysis against exact analyticalepending on the initial parametefsee Ref.[29] for de-
solutions with zero surface tensid=0. In Secs. llIB1 talils).
and 111 B 2 we will do the same with numerical simulations  We proceed with the case of basic periodicity 3. Inte-
of the full problem with finite surface tensi@ 0 and finite  grating the linearized dynamics, we obtain a nonexponential
angular velocity(). In Sec. Il B 1 we will consider the pres- growth of modek=3:
ence of injection as a destabilizing force while the centrifu-

gal force will be stabilizing. In Sec. Ill B 2 injection will not R24 gt
be present and the centrifugal force will be destabilizing. 0" O* R(t)\? O*
S3(t)=65(0) ——=—e%"'=55(0) | o —| 7"
R Ro
A. Zero surface tension (3.3

In Ref.[33] we showed that the weakly nonlinear analysisysing
at low orders, for the channel geometry, did approximate

accurately the zero surface tension evolution of single-finger ) 1 (2, 5 5
configurations. However, a word of caution is necessary in R (D)= Efo r<(¢,tydg=ag(t)—(n—1)ay(t)
general when testing approximations on the zero surface ten- (3.4)

sion case which, being an ill-posed problgdh, may exhibit

different types of pathologies. The most apparent ones argnq Eq.(3.2), Eq. (3.3 reads

the generation of finite-time singularities, which are regular-

ized by surface tension, but other more subtle singular effects as(t)

of surface tension have been recently unveildd,16, d3(t)=— [ag(t)—Zag(t)]. (3.5
which show that the integrable dynamics of the zero surface ag(t)
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Next, we compare this linear analysis with the exact evoluterms and in a linear manner. These terms are responsible for
tion of the basic mod&=3, which is given by the Fourier the numerical stiffness of the equations, which is signifi-
transform cantly reduced through the use of this method. Once the
high-order terms appear linear{gnd with constant coeffi-
53:£J'27Tr(¢)e3i¢, (3.6 cientg it is straightforward to apply an implicit time integra-
mJo tion method to these terms. We have used a linear propagator
method of second order in time. We use spectrally accurate
where we omit the time dependence for simplicity. Usingspatial discretization. The number of discretization points is
that ¢=g(6), whereg(#) can be computed from E€3.1),  chosen so that all Fourier modes éfa,t) with amplitude

and integrating by parts, we can write greater than round off are well resolved, and as soon as the
amplitude of the highest-wave-number mode becomes larger
e ig(a 1 (2™ g than the filter level, the number of modes is increased and
S3=—| r(0)e¥9g,(0)do= —f r,e39(9dg . ’ " .
7 Jo 37 the amplitude of the additional modes is set to zero. In a
13 typical calculation, 768 discretization points are initially
_ 1 e | x+ly used, and this number is a multiple of three to account for the
=_-— ro de, (3.7 . .
37 Jo r threefold symmetry of the computed interfaces. Time dtep

is decreased until an additional decreaseAaf does not
which yields change the solution to plotting accuracy, and none of the
other physical quantities are significantly different.
5 2 In all the following numerical solutions we take the initial
3" 6w ), db W‘ a_(z)(ao 2a3). (3.8 radius as the length scale, and &t=1 in dimensionless
units. We also set the dimensionless time with the character-

The surprising result here is that the full exact nonlineadStic velocity att=0, Vo=V(t=0)=1. We define the di-
evolution of amplitudes; of the basic mod&=3 coincides Mensionless surface tensiortat0 asBy=B(t=0). Dimen-
exactly with the linearized evolution at all times. This meanssionless injection and rotation are defined@§=QRy/V,
that the rest of the series cancels out exactly at all times. ThigndQ* =R, /V,. We will consider values of these param-
remarkable dynamical symmetry does reflect the awkwargters which make mode=3 the most unstable &0 in the
character of the integrable zero surface tension dynamicsinear dispersion relation. All the evolutions considered will
This property is obviously missed by the weakly nonlinearhave the symmetry,,= 8_m=Bm/2, whereg, is the am-
analysis. Notice, however, that the exact knowledge of a sp&litude of the cosine function cas§) andm=3p, wherep
cific mode amplitude does not yield the best possible deis an integer.

scription of the full interface, so even in this case, through

the description of the harmonics of the dominant mode, the 1. Configuration with rotation and injection

weakly nonlinear analysis may be useful to approximate the
interface evolution on the early stages. In the neighborhooqO

of a cusp singularity it will fail again because all orders are joscribed at all times with a weakly nonlinear approximas-

ne(\:/sgshaaryeﬂ;?;c; checked our scheme with a less patholo ictiPn' We would like to discuss to what extent a few orders
v u Wi P 91C%hn account for the whole interface evolution and hence, a

exact solution with zero surface tension, namely, the petal- : : :
; . . , oI of2. be regarded as a
like configuration of Ref[37], which has injection but no certain truncation of expansiof2.8 can g

; . ; . \ | of th . We will | with interf
rotation, and is thus the direct analogue of the smgle-fmgeﬁOOd model of the system. We will deal with interfaces ini

. ) X ; ally unstable due to injection@>0, A<0) and with rota-
T e e e moriear ton presen as sabizng OreAf<0). As he nerface
etry evolves and mean ra_dulk(t) increases, the stabl_llzmg effect

' of the angular velocity also increases, producing a circular
interface at long times. In this configuration the convergence

B. Nonzero surface tension condition is fulfilled at both the initial and final stages. De-

For the numerical integration of the interface we use thepending on the values d®, ), and o and on the initial
numerical method introduced and described in detail by Howondition, the intermediate stages of the interface evolution
et al. [38], as also in Refs[14,39,4Q. The interface is pa- may or may not fulfill the convergence condition. For the
rametrized at equally spaced points by means of an equatase when the convergence criterion is not met during a cer-
arclength variablex. As a consequence, sineemeasures tain time window, we ask ourselves how well the weakly
arclength along the interface, quantiy(«,t) is indepen- nonlinear analysis approaches the interface in this intermedi-
dent of « and a function of time only. The interface is de- ate nonconvergent regime.
scribed using tangent angié«,t) and interface length(t). We use the following parameters)* =0.001, Q*
These dynamical variables replace cartesian coordinates =0.999, A=—-1, andBy=1/30. The time window, where
of the interface. The evolution equations are written in termghe convergence condition is not fulfilled, depends on these
of 6(«,t) andL(t) in such a way that the high-order terms parameters and also on the initial condition. First, we con-
dominant at small scales appear separated from the othsider an initial condition given by mapping

1 (27d(Z%) do a,

We now address a configuration with rotation and injec-
n, with no counterpart in channel geometry, which is well
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501 .
e Exact evolution
~~~~~~~~~ Linear solution
230 ] 0.05F - - = -Weakly nonlinear
> O 1 0.04}
\1,
25 | —_ % Non-convergence regime
= 0.03f \
o
)
<o
U I T A T 0.02
-50 25 0 25 50 :
X
FIG. 2. Numerical simulation of the problem with rotation and 0.01
injection, using initial condition(3.9). The initial interface is the
tiny circle in the center of the image. Snapshots in intet¥ai= 0
— — H 0-00 1 1 1 1 1 1 1 1 )
to t/7=15.6, separated bixt/7=1.3. See text for more details. 02 4 6 8 101214 16 18 2
't
0.01 , . .
f(w,0)=w| 1.0+ — - (3.9 FIG. 4. Comparison of the exact evolution of the scaled ampli-
w tude of modek=3, against different approximations, using initial

condition(3.9) with both rotation and injection. See text for details.
This initial interface contains all modes that are multiple of

k=3. The different an:nplitudes of the modes follow a hier-interface configurations that do not satisfy the convergence
archy of formBsn~ B3, wheremis an integer. Second, we criterion of Sec. Il are indicated in the figures with dotted

consider initial condition lines.
The evolution in Fig. 2 does not fulfill the convergence
0.006 0.004 condition in a very short period of time, while the evolution
f(w,00=w| 1.0+ —+ — ) , (3.10 in Fig. 3 has a longer window of nonconvergence. The basic
® @ configuration of fingers is also clearly different, depending

on the initial condition. In the first case, the basic pattern

which follows a hierarchy of the fornB;~Bs, By~ B3, consists of three fingers that grow and later on, vanish. Mode
Bi~ B3, ... . Notice that in these two initial conditions, k=3 is not the unique relevant mode in this configuration.
amplitudeBg scales differently with3s. Although modek=6 decays at=0, it starts growing when

Several snapshots of the interfaces defined by conditiond largerR(t) is reached because the effective surface tension
(3.9 and (3.10 are presented in Figs. 2 and 3. We use di-is reduced. Its amplitude becomes even larger that nkode
mensionless timer=V,/[R,A(k=3t=0)](R,/A), where =3 after a certain period of time. For the evolution shown in
A is the maximum perturbation of the initial condition. The Fig. 3, the contribution of modk=6 becomes much larger
than that ok=3 much earlier, making the basic pattern to be
a six-finger configuration with a significalkt=9 contribu-

% tion.
Having defined these two configurations, we compare the
251 different linear and weakly nonlinear approximations with
the exact evolution. We begin with configuration E§.9)

- ol and plot B83/R(t), Bs/R(t) in Figs. 4 and 5, respectively.
The time window where the convergence condition is not
met is indicated with vertical lines.

25 Mode k=3 is approximated fairly well by the linear evo-
lution [ B3=\(3)3 and Bg=\(6)q], even in the noncon-
Sop, | S——— vergence regime. On the contrary, mokie 6 is not well
-50 225 0 25 50 described, not only in the nonconvergence regime but in the
X initial stages as well. A hierarchy of modes in the initial

FIG. 3. Numerical simulation of the problem with rotation and condition, which r_eSU|ts in a different qrder of magnTIIUde for
injection, using initial conditior(3.10. The initial interface is the ©ach mode amplitude, such as the hierargy~ B85 con-
tiny circle in the center of the image. Snapshots in intetya=0  Sidered here, makes the order of magnitude of the terms cou-
to t/7=16.9, separated bt/7=1.3 except for the second inter- Pling n modes not to correspond with ordef (equivalent to

face from the center, which is atr=0.65. See text for more de- order e""1) of the weakly nonlinear expansion. For ex-
tails. ample, whengs~ 85 and By~ 33, a three-mode coupling

026308-8



SYSTEMATIC WEAKLY NONLINEAR ANALYSIS OF . .. PHYSICAL REVIEW E 68, 026308 (2003

Non-convergence regime Exact evolution
0.01 . 0.040F | Linear solution
- — — -Weakly nonlinear 1-
0.00}y" e
beginning of Phd
,
-0.01F 0.032 | non P
convergence I -
0.021 regime [P
= 0.03f
%:O 0.024
«’.0.04 | =
| g
005F |\ &
\ 0.016
-0.06 | . § | == Exact evolution
A / ~~~~~~~~~ Linear solution
-0.07} S| 4 | |===r2-modes hierarchy
A3 ---- Weakly nonlinear
-0.08 L LI o s o e e m———, 0.008
0 2 4 6 8 1012 14 16 18 2
v R IR I

FIG. 5. Comparison of the exact evolution of the scaled ampli- 6o 03 06 09 12 15
tude of modek=6, against different approximations, using initial

condition(3.9) with both injection and rotation. See text for details.  F|G, 6. Comparison of the exact evolution of the scaled ampli-

) o tude of modek=3, against different approximations, using initial
B3PBsB3 has a magnitude similar to that of a two-mode cou-condition (3.10 with both rotation and injection. The main graph

pling B3B¢ or a single modgs,. Therefore, linear equation displays the initial convergence regime and the inset the whole

Bs=\(6)Bs is not systematic because it does not take intcevolution. See text for details.

account all orders up t¢?§ in Eq. (2.33. The proper equa-

tions for the initial stages of modds=3 andk=6, which k=3 andk=6, as shown in the figures. Singa~ B;, the

are referred to as “two-mode hierarchy” in the figures, readfirst proper correction to the linear evolution is the two-mode
) ] coupling (3.12 and not the “two-mode hierarchy(3.11).
Bs=\(3)Bs, Bs=N(6)Bs+C(6,385 (3.1)  Equation(3.12 is not a partial resummation now since it

with C(6,3)=1/2[F(6,3)— S(6,3)+\(3)J(6,3)]. Figure 5

i . 0.30
shows that these equations correctly approximate niode

=6 in the linear stages and improve the result also in the 0.20 - 0.24
nonlinear regime. o)

On the other hand, the weakly nonlinear approximation, 018 né .
Eq. (2.33, with all the couplings involving3; and B¢, reads 0.16 L o1z} 1 /
Bs=N(3)Bs+C(3,6)BsBs, Be=M(6)Bes+C(6,363, L Y

(3.12 4

o12boeol ' A/ L~
where  C(3,6)=1/24F(3,—3)—S(3,—3)+A(3)J(3,—3)

+F(3,6)—S(3,6)+A(6)J(3,6)]. This system of equations
is not systematic whefi;,,~ 85 because ternd; 3¢ of order 0.08
,82 is considered, while three-mode coupliBgB;8; is not.
Nevertheless, this is a partial resummatigaferred to as
“weakly nonlinear” in Figs. 4 and bwhich improves sig-
nificantly the evolution of mod&=3 while leaving mode

k=6 almost unchanged with respect to the evolution ob-
tained with Eq.(3.11). It should be mentioned that a partial

Bs/R(t)

0.04

Exact evolution
.......... Linear solution

- . . 0.00 [ = = =Waeakly nonlinear
resummation does not always lead to a similar improvement, ) ) - - - )
as we will see in the following section. 00 03 06 09 12 15

We now consider initial conditioi3.10. The main plots t/r

in Figs. 6 and 7 present the evolution of modes3 andk FIG. 7. Comparison of the exact evolution of the scaled ampli-

=6, respecti.vely, up to the nonconver.gence. regime. T_h?ude of modek=6, against different approximations, using initial
whole evolution of the modes is plotted in the insets. In this.gnqition (3.10 with both rotation and injection. The main graph

case, linear equatiori%sz)\(3),83 andB6=A(6),86 provide  displays the initial convergence regime and the inset the whole
the consistent description of the initial stages, both for modesvolution. See text for details.
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includes all the terms of ordg#3 [41]. As shown in Figs. 6 P e e L
and 7, it improves the linear evolution of modes 3 and o
k=6.

Besides the analysis indicated above, we have also inves-
tigated the resummation scheme introduced in R88],

where\ (k) By is substituted bys, in the left hand side of = OF
Eq. (3.12. In the present case this scheme does not produce
any significant improvement in the approximation during the
convergence regime, and the differences are extremely small -1
beyond that point.

From the previous results and from the comparison be-
tween the two different initial conditions, we can extract two 2
main practical conclusions for the use of the weakly nonlin-
ear analysis. First, for a given initial condition we can pro-
vide specific rules on the appropriate truncation scheme. If 1+
the order of magnitude of the initial modes is equal(
~ B for any m integey, each order of the weakly nonlinear
expansion is self-consistent regarding the order of magnitude
of the couplings involved, i.e. damode coupling is of order
B' (or ¢'71) and therefore, each additional order of the ex-
pansion improves the approximation. In practice, one has to
deal with a reduced number of modes. Typically, a good
criterion is to include only the linearly unstable modes. The ] R
stable modes will only play a role when activated through
nonlinear couplings at later stages. It is worth remembering
that when there is a finite injection raf&# 0, a stable mode FIG. 8. Numerical simulation of the problem with rotation as the
att=0 does not necessarily remain stable during all the lin-only destabilizing force. The upper evolution corresponda 60
ear evolution. When the amplitudes of modes are not uniand the lower toA=1. The initial condition in both cases is Eq.
form in the initial condition, the weakly nonlinear equations (3.10. Snapshots in interval/7=0 to t/7=0.93, separated by
must be changed into a set of equations consistent with that/7=0.133. See text for more details.
corresponding hierarchy of amplitudes. To obtain these equa-
tions all the modes and couplings which give a contributioninitial mechanism of the instabilitgwhile densities must ful-
of order B, must be taken into account, regardless of thefill p1<p2). The lack of injection makes the linear evolution
number of modes involved in the coupling, i.e., regardless oft Simple exponential growttor decay independent of vis-
the ordere of the expansion. As an example, the weakly COSity cont.rasA. We will study the two I|m|.t|ng cases: high-
nonlinear evolution of modk=9, considering initial condi- €St Vviscosity contrasth=1, and lowest viscosity contrast,
tion Eq. (3.9, makes the approximation worse unless all theA=0. We also havé)* =1 by our definition of parameters
terms of orders3 are included in the approximation. and takeBo=1/45, which makek=3 the most unstable

The second main practical conclusion is that remarkablymde during the whole linear evolution. _ _

a few modes to low orders do approximate the exact solution 1€ numerical simulations of the exact evolution for vis-
accurately, up to the nonconvergence regime. ParticularhOSity contrasté\=0 andA=1 are presented in Fig. 8. The
when the convergence condition is fulfilled along the wholeinitial condition is set by Eq(3.10. The interfaces that do
evolution, a low-order weakly nonlinear approximation pro- not verlfy the convergence Cond|t|(_)n are indicated again with
vides a satisfactory reduced description of the full nonlocadotted lines. The evolution of the interfaces for the two val-
equations. In any case, when there is a small time window of€S OfA are very similar in the convergence regime. The

nonconvergence, the approximation may still be remarkabl€dinning of the nonconvergence regime happens almost at
good. the same time for both values &f The viscosity contrast,

however, has a stronger effect in the later stages of the evo-
lution when the outward growing fingers have developed.
The shape of the fingers and the width of their necks depend
We compare, finally, the weakly nonlinear approximationstrongly on the viscosity contrast. In particular, the width of
with the exact numerical solution of the problem where ro-the finger necks are significantly smaller #&0.
tation is the only destabilizing force and injection is not We present in Figs. 9 and 10 the evolution of mdde
present. Our main purpose is to obtain analytical informa=3 andk=6, respectively, for both viscosity contrasts and
tion, using the weakly nonlinear analysis, about the interplaynitial condition (3.10. Following the discussion of the pre-
of rotation and viscosity contrast. This is an intrinsic nonlin- ceding section on the influence of the hierarchy of modes in
ear effect, which already shows up in the first weakly non-the nonlinear approximation, the linear dispersion relation
linear correction of the linear dispersion relatibsee Eq. describes the initial stages correctly and two-mode coupling
(2.33]. The viscosities of the fluids have no influence in theequation(2.33 (“weakly nonlinear” in the figuresimproves

2. Configuration with rotation as the only destabilizing driving
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the exactA=0 solution are visually indistinguishable in the
convergence regiménset of Fig. 9. This comes from the
fact that the linear evolution does not depend/Amnd is
therefore well suited to approximate an evolution where vis-
cosity contrasA=0 eliminates all the terms depending An

The first weakly nonlinear approximation does depend on
A: In the two case®\=0 andA=1, this approximation re-
produces the exact evolution in the convergence regime for
the two modek=3 andk=6 (see insets As it is expected,
the weakly nonlinear approximation &=3 for A=0 fur-

n:oo.s . . . ther improves the almost exact linear evolutiorkef3. It is
- 0.024  0.027  0.030 remarkable that the two leading modes, which basically de-
02t Exact solutions fine the whole interface, are obtained accurately in the con-
AAAAAAAAA Linear evolution vergence regime using only the first nonlinear approximation
= = Weakly nonlinear From Eg.(2.33 we see howA modifies the effect of
0.1} rotation at the nonlinear level. For low viscosity contrast the

0.0
0.00

0.01 0.02 0.03
t/x

0.04

0.05

stabilizing role of rotation, for instance, becomes less effec-
tive. We thus conclude that the coupling of viscosity contrast
and rotation in the first order of approximation has the im-
portant effect of making low-viscosity-contrast interfaces
more unstable. This prediction of the weakly nonlinear

FIG. 9. Comparison of the exact evolution of the scaled amp“‘analysis is confirmed in Figs. 9 and 10. The amplitude of

tude of modek=3, against different approximations, using initial
condition (3.10 with rotation as the only destabilizing force. The
end of the convergence regime is indicated by the vertical line. Th
inset is an enlargement of the main graph in the weakly nonlinear

regime. See text for more details.

the linear evolution, including only modés=3,6.

Observing Figs. 9 and 10, we see that méde3 is al-
ways the largest mode and its linear approximation is better
for A=0 than forA=1. Actually, the linear evolution and

| 0.036

[ 0.030

I 0.024

F 0.018

A=1

0.024 0.028 0.032

e Exact solutions
......... Linear evolution
= = Weakly nonlinear

A=1

0.00
0.00

0.01 0.02 0.03
t/x

0.04

0.05

modesk=3 andk=6 is always larger in the cage=0. The
effect of the first nonlinear coupling is persistent along the

Whole evolution, even in the nonconvergent regime.

This result has also been confirmed studying the exact
evolution and the weakly nonlinear approximation of modes
k=3,6, for bothA=0 andA=1, with the initial condition

f(w,00=w (3.13

10+O'1
o+

where the modes follow a hierarchy of forf,,~ 83 . Fur-
thermore, the analysis also shows that the partial resumma-
tion Eq.(3.12 worsens the approximation obtained with Eq.
(3.1 in the present configuration, in contrast with the im-
provement obtained in the preceding subsection.

IV. CONCLUSION AND PERSPECTIVES

We have extended to radial geometry the systematic
scheme discussed in R¢83], to derive successive orders of
mode couplings in the weakly nonlinear regime of the
Saffman-Taylor problem. We have found that the nonlinear
expansion converges uniformly in the radial geometry when-
everr?+r3<2R? s fulfilled at every point of the interface.
We have tested the weakly nonlinear approach against exact
solutions with zero surface tension and numerical integration
of the full problem in several representative situations. The
comparison is satisfactory in general, as in the channel ge-
ometry. Difficulties in the approach appear only in classes of
solutions which exhibit the ill posedness of the zero surface
tension problem in the form of finite-time cusp singularities.

FIG. 10. Comparison of the exact evolution of the scaled am-The small surface tension region is known to be a very deli-
p||tude of modek:G’ against different approximaﬁons' using ini- cate limit which can be studied perturbaUVer until times of

tial condition (3.10 with rotation as the only destabilizing force. order one, well into the highly nonlinear regirfi]. One of

The end of the convergence regime is indicated by the vertical linethe advantages of the present scheme, though, is that it can
The inset is an enlargement of the main graph in the weakly nonbe used for arbitrarily large surface tension, which is generi-
linear regime. See text for more details. cally relevant to physical situations. In this case, the method
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provides an accurate and controlled analytical approximation r +r 2 r —r 2
[ (¢1) (¢2)} (1) —r(o) 2R (A2)

of the dynamics. 2 b1—
The explicit knowledge of the successive orders of the 2 tar( ! 2)
approximation and of the convergence criterion will be par- 2

ticularly useful in morphologically stable arrangements sub_—for any two pointsé, and ¢, considered.

ject to external perturbatlons. For instance, our scheme is our purpose is to demonstrate that E(}gl) and Egs.

relevant to work out the systematic nonlinear, nonlocal term% . .
, - ) ’ o A2) are fully equivalent and thus, EqA1) provides the
in the problem of fluid invasion of random med4, 35 if it necessary and sufficient convergence condition. First, it is

is ever extended to radial geometry.
. clear that Eq.(A2) reproduces Eq(Al) when ¢,;= ¢,.
We have shown_ that one of the specn‘lc features of th herefore, it remains to be proved that conditi@l) im-
radial geometry, with no counterpart in the channel geom-

etry, is the fact that an appropriate combination of the stabipIIeS Eq.(A2). Defining

lizing effect of rotation and the destabilizing effect of injec- M) +1(d) 12 [ r(d)—r(dy) 12
tion can yield situations where the interface is initially Z(¢>1,¢2)=[ ! 5 2} 1¢ _¢2 ,
unstable and yet, the weakly nonlinear analysis is useful dur- 2 tar( ! 2)

ing the whole evolution. The weakly nonlinear analysis gives 2

rise to a reduced description of the whole Saffman-Taylor (A3)
dynamics in terms of ordinary differential equations, valid Eq. (AL) will imply Eq. (A2) if and only if any extreme oZ

when the convergence criterion is fulfilled at a]l times. with ¢,# ¢, is smaller or equal to the maximum of
We have also shown that the weakly nonlinear analysis

2 .
can provide useful and nonperturbative information in the:R;lf’aXf(?rzf:rz“)/ value of ¢, i.e., MaXZ($1,ho% b1))
< %)

case when rotation is the unique destabilizing force. Using To simolifv th . he following definitions:
the first weakly nonlinear correction, we have demonstrated o simplify the notation we use the following definitions:

that the main nonlinear coupling betweArand () is stabi-

lizing. This shows that the low-viscosity-contrast césey., = (o) +r(da) — :r¢1+r¢2 A= r(¢1)—r(¢2)
two similar liquids in the ce)l is more unstable than the 2 ne 2 2 ’
high-viscosity-contrast cas@.g., one liquid inside and air

outside. This result has been confirmed numerically using Ny, ~Tg,

viscosity contrast®\=0 andA=1. 6= T2 (A4)

We also writer (¢1)=r1, r(¢,)=r,, and taker ;=r, with-

out loss of generality and hende=0 (taking this prescrip-
We acknowledge financial support from the Diréccio tion, the sign ofr, and 6 cannot be fixeda priori). Using
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to zero to obtain information about the extremes:
APPENDIX: PROOF OF THE CONVERGENCE

CONDITION OF THE NONLINEAR EXPANSION _ A
Z¢1: r¢l r+ W
In order to obtain the different orders of the mode- tanz( 1 2)
coupling equation, we have carried out two power series ex- 2
pansions. First, we have expanded the inverse of the denomi- A2

nator in Egs.(2.1) and (2.2, which corresponds to the _ -0 (A6)

expansion of the average velocity and second, we have ex- d1— s b1— &y
panded the inverse of the denominator of curvat@r&5). If tar® 2 )COSZ( > )
both expansions are uniformly convergent then &48) is
also a uniformly convergent series. A
Written in terms of the nonscaled variables, the conver- Zy, =Ty, T—
gence condition for the curvature is tar? ¢1; ¢2)
r2+ri<2r? (A1) A2
+ =0 (A7)
at every point of the interface. The convergence condition for tar? $1— 4’2) co§( ¢1- ¢2)
the average velocity is 2 2
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By adding both equations we obtain the first condition thatand use this to write MaxX) as
any extreme must fulfill:

b1~ b s\?T?
ol ()T

— SA —

tar?( 1 5 ¢2) S (A8) Max(Z)=T2+ récoé(
rr

¢ (A13)

Introducing this condition irZ we obtain the value of any

maxima ofZ: Since the cosine function is bounded g |r |, the fol-
To-THA lowing inequalities hold:
Max(Z):rT. (A9)
272
(i) Let us inspect what happensdfandr , are both posi- Max(Z)$72+r_§, 1_(£) $T2+r—é_ (A14)
tive or both negative. In this case the following chain of Ty

properties holds:

_ T8 —[rylA  _¥1s8|-0 The question now is whether Max+T ;) <Max(r2+r3).
Max(Z)=r EE We recall here that2+7 is a two-point function and?

+r§, is a one-point function. More explicitly, we have

=T?<ri<Max(r)<Max(r?+r3). (A10)

(ii) To complete the demonstration we need to show that,
if r, and & have opposite signs, MaX}j<Max(r>+ ri) too.
We begin considering caspj|=[r,|. The following in- (A15)
equalities hold:

r+r_2—£(r2+r2+r2 +r2)+1(rr+r ry,)
6=z (Mt roHry 14 )+ 5(Mratryry,).

_T|+[rylA ol +]5|A 5 Using thata®+ b?=2ab in the second term of the rhs of Eq.
Max(Z)=T e 3] <r(r+A)=rj (A15) we obtain
<Max(r?+r3). (A11)
T2472< EMax(errrZ)ﬂL 1(r2+r2+r2 +r2)
Next, we address ca$é|<[r,|. We now subtract Eq$A6) ¢ 2 R S
and (A7) to find )
<Max(r’+r3), (A16)
1 — [ 2-T2)?
—=co§‘( 2! d)z) (ﬂ (A12) o — 2
tar? b1~ b2 2 Mg resulting in Max@) <r?+r;<Max(r’+r?), as we wanted
2 to demonstrate.
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