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Systematic weakly nonlinear analysis of radial viscous fingering

E. Alvarez-Lacalle, E. Paune´, J. Casademunt, and J. Ortı´n
Departament d’Estructura i Constituents de la Mate`ria, Universitat de Barcelona, Avinguda Diagonal, 647, E-08028 Barcelona, Spa

~Received 5 August 2002; published 18 August 2003!

We present a weakly nonlinear analysis of the interface dynamics in a radial Hele-Shaw cell driven by both
injection and rotation. We extend the systematic expansion introduced in@E. Alvarez-Lacalleet al., Phys. Rev.
E 64, 016302~2001!# to the radial geometry, and compute explicitly the first nonlinear contributions. We also
find the necessary and sufficient condition for the uniform convergence of the nonlinear expansion. Within this
region of convergence, the analytical predictions at low orders are compared satisfactorily to exact solutions
and numerical integration of the problem. This is particularly remarkable in configurations~with no counterpart
in the channel geometry! for which the interplay between injection and rotation allows that condition to be
satisfied at all times. In the case of the purely centrifugal forcing we demonstrate that nonlinear couplings make
the interface more unstable for lower viscosity contrast between the fluids.

DOI: 10.1103/PhysRevE.68.026308 PACS number~s!: 47.20.Ma, 47.20.Hw, 47.54.1r, 47.20.Ky
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I. INTRODUCTION

The evolution of an unstable fluid interface in a He
Shaw cell@1,2# has been widely studied, both theoretica
and experimentally. While it exhibits the inherent difficultie
of a free-boundary problem with nonsaturated, nonlinear,
nonlocal growth, yet it is simple enough to allow for analy
cal insight@3–6#. The channel and radial geometries are
two basic configurations.

In the channel geometry the interface between two flu
is driven by an external pressure~with different viscosities of
the fluids! or by gravity~with different densities! @2,3,7#. The
gravity-driven and the pressure-driven problems can
mapped into each other in the appropriate reference fra
leaving only two dimensionless parameters, viscosity c
trast A and dimensionless surface tensionB. A thorough
study of the problem in channel geometry has been purs
since Saffman and Taylor@3# explained the instability
mechanisms and obtained the analytical shape of steady
ger solutions forB50. In particular, the singular perturba
tion character of surface tension@8# has been identified a
source of different subtle effects. The most celebrated on
the mechanism of steady-state selection@9–11#, but more
recently, surprising singular effects on the dynamics of fin
competition have also been unveiled@12–16#. On the other
hand, viscosity contrast also plays an important role in
fingering dynamics. For instance, it has been demonstr
that the finger competition is inhibited when the viscos
contrast is low@7,17–20# and that consequently, the basin
attraction of the single-finger solution does depend on
cosity contrast@21,22#.

The radial configuration has also been object of intens
experimental and theoretical analysis. In the typical rad
configuration@23,24#, the circular Hele-Shaw cell is filled
with two fluids. The less viscous fluid is injected at the cen
of the cell and displaces the more viscous one. The inter
is unstable due to viscosity contrast, as in the pressure-dr
channel instability. To provide an instability independent
the viscosity contrast in radial geometry, a counterpart of
gravity-driven experiment is realized by introducing a ce
trifugal force. This situation has been extensively stud
1063-651X/2003/68~2!/026308~14!/$20.00 68 0263
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experimentally@25–27# and also theoretically@28–31#.
A basic and important feature distinguishes the radial

ometry from the channel one. In the former, the injection a
the rotation forcings are not equivalent due to the differ
dependence of viscous and centrifugal forces with radial
tance. Injection and rotation drivings thus give rise to diffe
ent interface dynamics and the problem involves three
mensionless parameters. Viscosity contrastA and
dimensionless surface tensionB are now supplemented with
the ratio of the two driving forces. It has been shown expe
mentally that complicated finger morphologies appear du
tip-splitting and screening effects@23,24# when injection is
the unique destabilizing force. On the contrary, a purely c
trifugally driven experiment leads to a different morpholo
of the fingers and the enhancement of pinch-off singularit
especially when the viscosity contrast is low@25,32#.

The rich experimental phenomena and the specific f
tures of the radial geometry indicated above suggest the
evance of extending to this geometry the weakly nonlin
analysis of the viscous fingering problem developed in R
@33#.

The main reason for developing the weakly nonline
analysis is the possibility to extract analytical informatio
which is not perturbative in the relevant parameters of
problem. For instance, the region of finiteB, which is rel-
evant in the typical configuration emerging from the line
instability, can be explored naturally although, in the u
stable configuration, the analysis is limited to a transient. T
interplay of rotation and injection in radial geometry can a
be best understood by analyzing how the correspond
terms interact in the early nonlinear regime. Similarly, t
weakly nonlinear analysis provides explicit nonperturbat
information about the connection between centrifugal for
and viscosity contrast at the nonlinear level in the pur
centrifugally driven case.

Remarkably enough, in the radial geometry one can fi
situations which combine rotation and injection in such
way that the early unstable growth is stabilized at long tim
It is then possible to apply the weakly nonlinear analysis
the entire interface evolution, giving rise to a reduced d
scription of the whole Saffman-Taylor dynamics in terms
©2003 The American Physical Society08-1
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a set of ordinary differential equations. This situation has
counterpart in channel geometry.

Finally, the weakly nonlinear analysis is also relevant
the analysis of a stably stratified interface which is driven
an external force such as modulations of the gap or of
wetting condition~see Ref.@34# for quenched disorder!. Spe-
cifically, the information provided by the weakly nonline
analysis in channel geometry has already proven usefu
morphologically stable interfaces subject to a local forcing
the form of random cell gap variations@35#. In such cases
the lowest order of the nonlinear terms is required to obt
the long-wavelength, low-frequency scaling properties of
interface fluctuations. While nonlinear couplings that are
cal in space are relatively easy to obtain, this is not the c
for nonlocal terms. The weakly nonlinear analysis is the
useful tool to obtain the complete set of nonlinearities to
desired order, to discuss, for instance, the universal pro
ties of interface growth@35#. The present analysis will be
useful to extend these studies to the radial geometry.

The aim of this paper is to work out the details of t
expansion in radial geometry. We will explicitly carry out th
nonlinear expansion up to second-order couplings, includ
both rotation and injection, which extends the result of R
@36# to the case with rotation. We will extract analytical in
formation concerning the interplay between injection, ro
tion, and viscosity contrast at different orders of nonline
couplings. We will also be interested in obtaining an ex
criterion of convergence of the nonlinear expansion in
radial geometry, extending the analysis of the channel ge
etry.

The approximate evolution obtained with the nonline
analysis will be compared with numerical simulations w
finite surface tension. The nonlinear expansion is also
plied to the zero surface tension case which is special in
explicit time-dependent solutions are known, even for
combined case of rotation and injection@29#, and therefore
provide an additional ground for testing the method. Some
the physical anomalies of such solutions will be clea
manifested within the weakly nonlinear scheme.

The layout of the rest of the paper is as follows: in Sec
we introduce the formalism and obtain the weakly nonlin
equations for Hele-Shaw flows in radial geometry. We a
address the convergence criterion in this section. Its m
ematical proof is given in Appendix. Section III presents
numerical analysis of exact, simulated, and approximate
lutions. The main results and the conclusions are sum
rized in Sec. IV.

II. WEAKLY NONLINEAR EQUATIONS

A. Vortex sheet formalism in radial geometry

Let us consider the Hele-Shaw problem in the radial
ometry. The initial interface is a constant circleR5R0 which
separates an outer fluid~labeled 1! and an inner fluid~labeled
2!, which have known dynamic viscositiesm1 , m2 and den-
sitiesr1 , r2. The gap between the plates isb, Q is the areal
injection rate, andV is the angular velocity of the cell~Fig.
1!.
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The equations of motion for the interface and the bou
ary conditions are well known@3#. Following the same
approach as that in Ref.@33# and using the formulation o
Tryggvason and Aref@7#, we introduce velocityUW 5(uW 1

1uW 2)/2 whereuW 1 and uW 2 are the two limiting values~from
both sides of the interface! of the solenoidal part of the ve
locity at a given point. This velocityUW can be expressed in
terms of vortex sheet distributiong at the interface as

Ur̂5UW ~f1 ,t !• r̂

5
1

2p
PE

0

2p r 2
2 sin~f22f1!

r 1
21r 2

222r 1r 2 cos~f22f1!
g̃~f2!df2 ,

~2.1!

U f̂5UW ~f1 ,t !•f̂

5
1

2p
PE

0

2p r 1r 22r 2
2 cos~f22f1!

r 1
21r 2

222r 1r 2 cos~f22f1!
g̃~f2!df2 ,

~2.2!

whereg̃5A11(r f /r )2(uW 12uW 2)• ŝ, and we have used nota
tion r (f1 ,t)[r 1 , r (f2 ,t)[r 2.

In the presence of sinks or sources, velocitiesuW 1 anduW 2

which defineUW include only the solenoidal part of the tota
velocity field. For this reason, when injectionQ.0 or with-
drawalQ,0 of the inner fluid is present, Eqs.~2.1! and~2.2!
must be supplemented with the corresponding irrotatio
part of the velocity field.

In order to obtain the expression for the vorticity as
function of uW i , we use Darcy’s law for the gap-average
velocity @25#:

FIG. 1. Sketch of the rotating Hele-Shaw cell in circular geo
etry.
8-2
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¹W pi52
12m i

b2 S uW i1
Q

2pr
r̂ D1V2r i r r̂ , i 51,2 ~2.3!

and boundary conditions

p22p15sk, un̂
(1)

5un̂
(2) . ~2.4!

After some algebra, we can write an expression for the v
ticity as a function ofUW :

g̃5
b2

12

2s

r ~m11m2!
kf12AUW •S r f

r
,1D12A

Q

2pr 2
r f

2
b2

12

2V2~r22r1!

m11m2
r f , ~2.5!

with the curvature and the viscosity contrast as

k5
~r 212r f

2 2rr ff!

~r 21r f
2 !3/2

, A5
m22m1

m11m2
. ~2.6!

We now impose the continuity of the normal velocity. Th
projection of the radial velocity along normal directionn̂ has
two contributions: the solenoidal part of the average veloc
UW , and the irrotational part of the mean interface veloc
UW irrot :

dr

dt
r̂ •n̂5UW •n̂1UW irrot •n̂ → dr

dt
5Ur̂2

r f

r
U f̂1

Q

2pr
.

~2.7!

Equations~2.1!, ~2.2!, ~2.5!, and ~2.7! are the dynamic
equations for an interface with no radial overhangs.

B. Systematic weakly nonlinear analysis: Radial geometry

Our goal in this section is to introduce a systema
method to derive an evolution equation of the interface
real space, up to a given order in nonlinear couplings, in
radial geometry. As in Ref.@33#, the different orders of mode
couplings will be ordered as powers of a ‘‘book-keepin
parameter«, to be defined below. The evolution of the inte
face will thus take the following form:

dr

dt
5F@r #1«G@r #1•••, ~2.8!

where F@r #,G@r #, . . . are nonlocal operators on functio
r (f,t), including nonlinearities of ordern11 in the term of
order«n.

To define small parameter«, we first split functionr (f,t)
in two parts, namely, the radius of the unperturbed circle
the deviation from this circle:

r ~f,t !5AR0
21

Qt

p
1r ~f,t !5R~ t !1r ~f,t !. ~2.9!
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The largest length scale in the problem is given byR(t),
which is a constant whenQ50. For finite injection rate,
R(t) defines an evolving~unstable! solution. We could na-
ively define « as «5w/R, w being the typical scale o
r (f,t). This straightforward generalization of the scalin
procedure used in the channel geometry is not appropr
here. The reason was already pointed out by Miranda
Widom @36#. In the radial geometry, mass conservation i
plies that the zero mode~which, in the channel geometry, i
decoupled from the rest and drops out of the formulatio!
has a higher-order nonzero amplitude, since it must satis
mass conservation relation which, to lowest order, reads

d052
1

2R (
kÞ0

udku2. ~2.10!

Since the zero mode is explicitly one order higher than
others, we must consider a scaling that does not mix differ
orders of the weakly nonlinear analysis. We use the follo
ing scaling:

r ~f!5R@11«r ~f!#, ~2.11!

with

r ~f!5 r̃ ~f!1«r 0 , ~2.12!

wherer 0 stands for the zero mode andr̃ (f) is the sum of all
the other modes. To simplify the notation we have dropp
out the time dependence.

We define the characteristic scaling velocity as:

V5
1

m21m1
S Q

2pR
~m22m1!2

b2

12
V2~r22r1!RD ,

~2.13!

implying that time will be scaled withR/V. Once Eqs.~2.1!,
~2.2!, ~2.5!, and~2.7! are made dimensionless, we have

g̃52B
kf

11«r
12AUW •S «r f

11«r
,1D 12«S C

~11«r !2
2D D r f

~2.14!

for the vorticity, where

B5
b2

12

s

~m11m2!VR2
, C5

QA

2pRV
,

D5
b2

12

V2DrR

~m11m2!V
,

k5
~11«r !212«2r f

2 2«~11«r !r ff

@~11«r !21«2r f
2 #3/2

, Dr5r22r1 .

~2.15!

B is the dimensionless surface tension,C is the scaled injec-
tion, andD the scaled rotation. For the integrals we have
8-3



Ur̂~f!5
1

PE2p 112«r 21«2r 2
2

g̃~f2 ,t !df2 , ~2.16!
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4p 0
tanS f22f1

2 D @11« f ~f1 ,f2!1«2g~f1 ,f2!#

U f̂~f!5
1

4p
PE

0

2p11« f ~f1 ,f2!1«2r 1r 22~112«r 21«2r 2
2!cos~f22f1!

2 sin2S f22f1

2 D @11« f ~f1 ,f2!1«2g~f1 ,f2!#

g̃~f2!df2 , ~2.17!

with
Hf@ f #5

1
PE2p

f ~f8!cotS f82f Ddf8, ~2.21!
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~r 12r 2!2

4 sin2S f22f1

2 D 1r 1r 2 ,

~2.18!

and the dimensionless equation for the evolution ofr (f) is

«
dr̃

dt
1«2

dr0

dt
5Ur̂2«

r fU f̂

11«r
1

Q

2pRVF 1

11«r
2~12«2r 0!G .

~2.19!

This last Eq.~2.19! is the only one which is sensitive t
the different scalings inr (f). This equation has a time de
rivative which produces different results depending on h
R(t) is involved in the scaling. The scaling that we propo
is the only one that is truly systematic. Other possibilities
not incorrect but will mix different orders of the weakly non
linear expansion at a given order in«.

Finally, to complete the theoretical analysis we addr
the convergence of the weakly nonlinear expansion~2.8!. For
the channel geometry, we showed in Ref.@33# that the ex-
pansion in« converges uniformly if and only ifuhxu,1 in
the whole domain of integration. Here, we find a simi
condition in terms of nonscaled variabler. Whenever an in-
terface fulfills

r 21r f
2 ,2R2, ~2.20!

the nonlinear expansion converges uniformly. This resul
proved in Appendix and it reduces touhxu,1 in the limit of
channel geometry (R→`). This result provides a practica
criterion to assess the validity of the expansion in differ
situations.

C. The linear dispersion relation

We want to obtain the linear dispersion relation, in bo
real and Fourier space, to discuss the interplay between
tation and injection at the linear stage of the instability.

We will use the following definitions for the average an
the Hilbert transform of a functionf in the unit circle:

f̄ 5
1

2pE0

2p

f ~f!df,
02630
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where subindexf in operatorH indicates the argument o
the Hilbert transform, not a derivative. The zero orders
vorticity andUW are:

g̃ (0)52AUf̂
(0) , U f̂

(0)
5

g̃ (0)

2
, Ur̂

(0)5
1

2
Hf@g̃ (0)#,

~2.22!

and thus

g̃ (0)5Ag̃0. ~2.23!

This is different from its counterpart in the channel geome
@33#. Here, the equations for the vorticity at consecutive
ders require the knowledge of the average vorticity. T
equations are solved by averaging on both sides. For
ample, at zero order,AÞ1 will lead to g̃ (0)50 but for A

51, g̃ (0) can be any constant. The presence of an arbitr
constant is not a problem, since it is eliminated at each or
in the equation for the evolution of the interface.

Expanding the equations up to first order and usingg̃ (0)

50, the linear equation for the evolution of the interfa
deviation reads

dr̃

dt
5Ur̂

(1)2
Q

2pRV
r̃ 5

1

2
Hf@g̃ (1)#2

Q

2pRV
r̃ , ~2.24!

with

g̃ (1)522B~ r̃ 1 r̃ ff!f12~C2D ! r̃ f . ~2.25!

We can now perform a Fourier transform of the equatio
and, after reintroducing the adequate dimensions, we re
duce the linear dispersion relation found in Ref.@25#:

l~k!5S b2

12

V2Dr

m11m2
2

QA

2pR2D uku

2
b2

12R3

s

m11m2
uku~k221!2

Q

2pR2
. ~2.26!

We now return to the question of the different scali
alternatives introduced at the end of Sec. II B. Had we u
8-4
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scaling «5w/R2(t), term Q/(2pR2) in Eq. ~2.26! would
have disappeared before reintroducing the dimensions.
the contrary, for«5w this term becomes multiplied by
factor 2. These changes in the dimensionless linear dis
sion relation come from the fact that a modedn in the scaling
adopted in Eqs.~2.11! and ~2.12! becomesdn /R in the first
of the scaling alternatives above.

TermQ/(2pR2) at the end of Eq.~2.26! is stabilizing for
positive injection rate (Q.0) and destabilizing forQ,0. In
a sense, this is a purely geometric effect, which contribu
to the growth or decay of modes due to the expansion
contraction of the base state. As pointed out in Ref.@29#,
term Q/(2pR2), that can be scaled out, must be dist
guished from the other terms that describe the intrinsic in
bility of the problem. Disregarding that last term, it is cle
that injection and rotation (CV0 andDV0, respectively! play
an equivalent role in the linear dispersion relation, since b
appear multiplied byk. By choosing the proper viscosity an
density contrasts, they can produce exactly the same stab
ing or destabilizing effect. This is the counterpart, in t
radial geometry, of the equivalence between the roles of
jection and gravity in the channel geometry. In the chan
geometry, however, the equivalence is exact and can thu
extended to the whole nonlinear evolution~in the appropriate
reference frame!. This is not the case in radial geometry,
shown in the following section.

D. First weakly nonlinear order

The purpose of this section is to derive the leading n
linear contribution for the radial Hele-Shaw cell with bo
rotation and injection. We first recall that mass conservat
relates the zero mode with the other modes. In the orig
nonscaled variables this reads

ḋ052
Q

2pR2
d02

1

R (
kÞ0

udku2l~k!. ~2.27!

To reproduce this result and the nonlinear couplings for
other modes we start with the equation for the interface
order«2:

dr̃

dt
1«

dro

dt
5O~«0!1«S Ur̂

(2)1
Q

2pRV
r̃ 2D , ~2.28!

where we have used thatU f̂
(1)

5U f̂
(0)

5Ur̂
(0)5g̃ (0)5g̃ (0)50.

Velocity Ur̂
(2) can be obtained from the expansion ofUr̂ :

Ur̂
(2)5

1

2
Hf@g̃ (2)#1

1

2
Hf†@ r̃ 2 r̃ ~f!#g̃ (1)

‡, ~2.29!

where

g̃ (2)52Bk (2)22Br̃k (1)12Ar̃fUr̂
(1)12AUf̂

(2)
24Cr̃r̃ f .

~2.30!

k (2) andU f̂
(2) can be computed from Eqs.~2.15! and ~2.17!,

respectively. The latter involves onlyg̃ (1). We obtain finally
02630
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dr̃

dt
1«

dro

dt
5O~«0!1«S HfFBkf8

(2)
2

C1D

2
~ r̃ 2!f8G

1 r̃ Hf@sf8#1AHf†Hf8@~ r̃ sf9!f9#‡

2AHf†r̃ Hf8@sf9f9#1 r̃ f8Hf8@sf9#‡

1
Q

2pRV
r̃ 2D , ~2.31!

with

k (2)5 r̃ 21
r̃ f

2

2
12r̃ r̃ ff , sf5@B~ r̃ 1 r̃ ff!1~D2C! r̃ #f .

~2.32!

By introducing a superposition of Fourier modes inr̃ we
directly recover Eq.~2.27! for mode k50. For the other
modes (kÞ0) we get the following result:

ḋk5l~k!dk1 (
pÞ0,k

dpdk2p@F~k,p!2S~k,p!

1l~p!J~k,p!#, ~2.33!

where

F~k,p!5
uku
R F2

QA

2pR2 S 1

2
2sgn~kp! D1

b2

24

V2Dr

m11m2
G ,

~2.34!

S~k,p!5
uku
R F b2

12R3

s

m11m2
S 12

p

2
~k13p! D G ,

~2.35!

J~k,p!52
1

R
@Auku„12sgn~kp!…11#, ~2.36!

where sgn~ ! is the sign function. For the particular caseV
50, the expression above reproduces the result of Mira
and Widom@36#. We find that the presence of rotation do
not change the formal structure of the equations.

To emphasize the roles of injection and rotation, we d
fine quantityH(k,p) as the part of the coupling matrix in th
right hand side~rhs! of Eq. ~2.33! which containsQ and/or
V. This quantity reads:

H~k,p!5
uku
2R S QA

2pR2
1

b2

12

V2Dr

m11m2
D

1J~k,p!upuS b2

12

V2Dr

m11m2
2

QA

2pR2D 1
Q

2pR3
.

~2.37!

We observe that experimental parameters occur only in
groups, namely,
8-5
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Ṽ5
b2

12

V2Dr

m11m2
, Q̃5

QA

2pR2
. ~2.38!

Both of them turn out to multiply the same functions of t
wave numbers, except for changes in sign. However, no
that the relative sign ofṼ andQ̃ is different in the linear part
and in the leading nonlinear part of the dynamics.

Considering the approach taken in the preceding sect
where only the morphological instabilities are taken into
count, there are only two important parameters in the lin
regime: viscosity contrastA and ratioB/(C1D) between the
capillary forces and the sum of the injection and rotat
forces. On the contrary, the weakly nonlinear solution sho
that another important parameter must be taken into acco
namely, coefficientQ̃/Ṽ. The overall dynamics presen
three different parametersA, B/(C1D), and C/D. This
clearly shows that the effects of injection and rotation are
equivalent, and that the intrinsic dimensionless paramete
lated to rotation already shows up at the early nonlinear
gime.

Finally, notice that at nonlinear order there is also a g
metrical termQ/(2pR3) independent ofk. This term cannot
be scaled by the same procedure used at the linear order
analogue termQ/(2pR2).

III. ANALYSIS OF EXACT SOLUTIONS AND THEIR
WEAKLY NONLINEAR APPROXIMATIONS

We proceed to compare the approximate results that
weakly nonlinear equations@Eq. ~2.33!# provide, with exact
solutions of the full problem obtained analytically or nume
cally. Our purpose is to gain further information about t
implementation of the weakly nonlinear analysis and to d
cuss its accuracy.

We will focus on three comparisons. In Sec. III A we w
check the weakly nonlinear analysis against exact analy
solutions with zero surface tensionB50. In Secs. III B 1
and III B 2 we will do the same with numerical simulation
of the full problem with finite surface tensionBÞ0 and finite
angular velocityV. In Sec. III B 1 we will consider the pres
ence of injection as a destabilizing force while the centri
gal force will be stabilizing. In Sec. III B 2 injection will no
be present and the centrifugal force will be destabilizing.

A. Zero surface tension

In Ref. @33# we showed that the weakly nonlinear analy
at low orders, for the channel geometry, did approxim
accurately the zero surface tension evolution of single-fin
configurations. However, a word of caution is necessary
general when testing approximations on the zero surface
sion case which, being an ill-posed problem@8#, may exhibit
different types of pathologies. The most apparent ones
the generation of finite-time singularities, which are regul
ized by surface tension, but other more subtle singular eff
of surface tension have been recently unveiled@15,16#,
which show that the integrable dynamics of the zero surf
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tension problem may be dramatically different from the reg
larized one even for smooth nonsingular solutions.

These series of results point out precisely to the neces
of having analytical tools that are nonperturbative in surfa
tension, such as the present weakly nonlinear analysis
detailed study of the small surface tension limit is obviou
beyond the scope of the present paper but we will illustr
how such pathologies of the integrable dynamics show up
the systematic nonlinear analysis, in an example.

Consider the exact solutions of high viscosity contr
(A521) discussed in Ref.@29# and first obtained in Ref.
@30#, based on the conformal mapping formalism. The so
tions are written in the form

f ~v,t !5
1

v
@a0~ t !1an~ t !vn#, ~3.1!

where f (v,t)5z5x1 iy is an analytical function inside the
unit disk in thev complex plane, which maps the disk on
the viscous fluid domain in the physical plane. The interfa
is obtained in a parametric form by settingv5eiu ~with 0
<u,2p). Real functionsa0(t) andan(t) satisfy

a0
2~ t !2~n21!an

2~ t !5
Q

p
t1k0 , a0

n~ t !5knan~ t !a0~ t !enṼt.

~3.2!

Constants of motion,kn andk0, are fixed by the initial con-
ditions. The injection (Q.0) destabilizes the interface an
the rotation (Ṽ) is stabilizing.

It is important to recall the basic properties of this fam
of solutions. The interface described by Eq.~3.1! presents
nfold symmetry and its Fourier expansion contains only h
monics of the basicn mode. Ifan /a0 is small, the amplitude
of modek5n satisfiesdk5n.an and the harmonics are hi
erarchically ordered asdk52n;dn

2 , dk53n;dn
3 , . . . . Fur-

thermore, these solutions can present finite-time singular
depending on the initial parameters~see Ref.@29# for de-
tails!.

We proceed with the case of basic periodicityn53. Inte-
grating the linearized dynamics, we obtain a nonexponen
growth of modek53:

d3~ t !5d3~0!

R0
21

Q

p
t

R0
2

e3V* t5d3~0! S R~ t !

R0
D 2

e3V* t.

~3.3!

Using

R2~ t !5
1

2pE0

2p

r 2~f,t !df5a0
2~ t !2~n21!an

2~ t !

~3.4!

and Eq.~3.2!, Eq. ~3.3! reads

d3~ t !5
a3~ t !

a0
2~ t !

@a0
2~ t !22a3

2~ t !#. ~3.5!
8-6
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Next, we compare this linear analysis with the exact evo
tion of the basic modek53, which is given by the Fourie
transform

d35
1

pE0

2p

r ~f!e3if, ~3.6!

where we omit the time dependence for simplicity. Usi
that f5g(u), whereg(u) can be computed from Eq.~3.1!,
and integrating by parts, we can write

d35
21

p E
0

2p

r ~u!e3ig(u)gu~u!du5
1

3p i E0

2p

r ue3ig(u)du

5
1

3p i E0

2p

r uFx1 iy

r G3

du, ~3.7!

which yields

d35
1

6p i E0

2pd~z3!

du

du

uzu2
5

a3

a0
2 ~a0

222a3
2!. ~3.8!

The surprising result here is that the full exact nonline
evolution of amplituded3 of the basic modek53 coincides
exactly with the linearized evolution at all times. This mea
that the rest of the series cancels out exactly at all times. T
remarkable dynamical symmetry does reflect the awkw
character of the integrable zero surface tension dynam
This property is obviously missed by the weakly nonline
analysis. Notice, however, that the exact knowledge of a s
cific mode amplitude does not yield the best possible
scription of the full interface, so even in this case, throu
the description of the harmonics of the dominant mode,
weakly nonlinear analysis may be useful to approximate
interface evolution on the early stages. In the neighborh
of a cusp singularity it will fail again because all orders a
necessary then.

We have also checked our scheme with a less patholog
exact solution with zero surface tension, namely, the pe
like configuration of Ref.@37#, which has injection but no
rotation, and is thus the direct analogue of the single-fin
configuration of Ref.@33#. In this case, the weakly nonlinea
analysis typically performs as well as in the channel geo
etry.

B. Nonzero surface tension

For the numerical integration of the interface we use
numerical method introduced and described in detail by H
et al. @38#, as also in Refs.@14,39,40#. The interface is pa-
rametrized at equally spaced points by means of an eq
arclength variablea. As a consequence, sinces measures
arclength along the interface, quantitysa(a,t) is indepen-
dent of a and a function of time only. The interface is d
scribed using tangent angleu(a,t) and interface lengthL(t).
These dynamical variables replace cartesian coordinatesx, y
of the interface. The evolution equations are written in ter
of u(a,t) andL(t) in such a way that the high-order term
dominant at small scales appear separated from the o
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terms and in a linear manner. These terms are responsibl
the numerical stiffness of the equations, which is sign
cantly reduced through the use of this method. Once
high-order terms appear linearly~and with constant coeffi-
cients! it is straightforward to apply an implicit time integra
tion method to these terms. We have used a linear propag
method of second order in time. We use spectrally accu
spatial discretization. The number of discretization points
chosen so that all Fourier modes ofu(a,t) with amplitude
greater than round off are well resolved, and as soon as
amplitude of the highest-wave-number mode becomes la
than the filter level, the number of modes is increased
the amplitude of the additional modes is set to zero. In
typical calculation, 768 discretization points are initial
used, and this number is a multiple of three to account for
threefold symmetry of the computed interfaces. Time stepDt
is decreased until an additional decrease ofDt does not
change the solution to plotting accuracy, and none of
other physical quantities are significantly different.

In all the following numerical solutions we take the initia
radius as the length scale, and setR051 in dimensionless
units. We also set the dimensionless time with the charac
istic velocity at t50, V05V(t50)51. We define the di-
mensionless surface tension att50 asB05B(t50). Dimen-
sionless injection and rotation are defined byQ* 5Q̃R0 /V0

andV* 5ṼR0 /V0. We will consider values of these param
eters which make modek53 the most unstable att50 in the
linear dispersion relation. All the evolutions considered w
have the symmetrydm5d2m5b umu/2, whereb umu is the am-
plitude of the cosine function cos(mx) andm53p, wherep
is an integer.

1. Configuration with rotation and injection

We now address a configuration with rotation and inje
tion, with no counterpart in channel geometry, which is w
described at all times with a weakly nonlinear approxim
tion. We would like to discuss to what extent a few orde
can account for the whole interface evolution and hence
certain truncation of expansion~2.8! can be regarded as
good model of the system. We will deal with interfaces in
tially unstable due to injection (Q.0, A,0) and with rota-
tion present as stabilizing force (Dr,0). As the interface
evolves and mean radiusR(t) increases, the stabilizing effec
of the angular velocity also increases, producing a circu
interface at long times. In this configuration the convergen
condition is fulfilled at both the initial and final stages. D
pending on the values ofQ̃, Ṽ, and s̃ and on the initial
condition, the intermediate stages of the interface evolut
may or may not fulfill the convergence condition. For th
case when the convergence criterion is not met during a
tain time window, we ask ourselves how well the weak
nonlinear analysis approaches the interface in this interm
ate nonconvergent regime.

We use the following parameters:V* 50.001, Q*
50.999, A521, andB051/30. The time window, where
the convergence condition is not fulfilled, depends on th
parameters and also on the initial condition. First, we c
sider an initial condition given by mapping
8-7
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ALVAREZ-LACALLE et al. PHYSICAL REVIEW E 68, 026308 ~2003!
f ~v,0!5vS 1.01
0.01

v3 D . ~3.9!

This initial interface contains all modes that are multiple
k53. The different amplitudes of the modes follow a hie
archy of formb3m;b3

m , wherem is an integer. Second, w
consider initial condition

f ~v,0!5vS 1.01
0.006

v3
1

0.004

v6 D , ~3.10!

which follows a hierarchy of the formb3;b6 , b9;b3
2,

b12;b3
3 , . . . . Notice that in these two initial conditions

amplitudeb6 scales differently withb3.
Several snapshots of the interfaces defined by condit

~3.9! and ~3.10! are presented in Figs. 2 and 3. We use
mensionless timet5Vo /@Rol(k53,t50)#(Ro /D), where
D is the maximum perturbation of the initial condition. Th

FIG. 2. Numerical simulation of the problem with rotation an
injection, using initial condition~3.9!. The initial interface is the
tiny circle in the center of the image. Snapshots in intervalt/t50
to t/t515.6, separated byDt/t51.3. See text for more details.

FIG. 3. Numerical simulation of the problem with rotation an
injection, using initial condition~3.10!. The initial interface is the
tiny circle in the center of the image. Snapshots in intervalt/t50
to t/t516.9, separated byDt/t51.3 except for the second inte
face from the center, which is att/t50.65. See text for more de
tails.
02630
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interface configurations that do not satisfy the converge
criterion of Sec. III are indicated in the figures with dotte
lines.

The evolution in Fig. 2 does not fulfill the convergenc
condition in a very short period of time, while the evolutio
in Fig. 3 has a longer window of nonconvergence. The ba
configuration of fingers is also clearly different, dependi
on the initial condition. In the first case, the basic patte
consists of three fingers that grow and later on, vanish. M
k53 is not the unique relevant mode in this configuratio
Although modek56 decays att50, it starts growing when
a largerR(t) is reached because the effective surface tens
is reduced. Its amplitude becomes even larger that modk
53 after a certain period of time. For the evolution shown
Fig. 3, the contribution of modek56 becomes much large
than that ofk53 much earlier, making the basic pattern to
a six-finger configuration with a significantk59 contribu-
tion.

Having defined these two configurations, we compare
different linear and weakly nonlinear approximations w
the exact evolution. We begin with configuration Eq.~3.9!
and plot b3 /R(t), b6 /R(t) in Figs. 4 and 5, respectively
The time window where the convergence condition is n
met is indicated with vertical lines.

Modek53 is approximated fairly well by the linear evo
lution @ḃ35l(3)b3 and ḃ65l(6)b6], even in the noncon-
vergence regime. On the contrary, modek56 is not well
described, not only in the nonconvergence regime but in
initial stages as well. A hierarchy of modes in the initi
condition, which results in a different order of magnitude f
each mode amplitude, such as the hierarchyb3m;b3

m con-
sidered here, makes the order of magnitude of the terms
pling n modes not to correspond with orderbn ~equivalent to
order «n21) of the weakly nonlinear expansion. For e
ample, whenb6;b3

2 and b9;b3
3, a three-mode coupling

FIG. 4. Comparison of the exact evolution of the scaled am
tude of modek53, against different approximations, using initi
condition~3.9! with both rotation and injection. See text for detail
8-8
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SYSTEMATIC WEAKLY NONLINEAR ANALYSIS OF . . . PHYSICAL REVIEW E 68, 026308 ~2003!
b3b3b3 has a magnitude similar to that of a two-mode co
pling b3b6 or a single modeb9. Therefore, linear equation
ḃ65l(6)b6 is not systematic because it does not take i
account all orders up tob3

2 in Eq. ~2.33!. The proper equa-
tions for the initial stages of modesk53 andk56, which
are referred to as ‘‘two-mode hierarchy’’ in the figures, re

ḃ35l~3!b3 , ḃ65l~6!b61C~6,3!b3
2 ~3.11!

with C(6,3)51/2@F(6,3)2S(6,3)1l(3)J(6,3)#. Figure 5
shows that these equations correctly approximate modk
56 in the linear stages and improve the result also in
nonlinear regime.

On the other hand, the weakly nonlinear approximati
Eq. ~2.33!, with all the couplings involvingb3 andb6, reads

ḃ35l~3!b31C~3,6!b3b6 , ḃ65l~6!b61C~6,3!b3
2,

~3.12!

where C(3,6)51/2@F(3,23)2S(3,23)1l(3)J(3,23)
1F(3,6)2S(3,6)1l(6)J(3,6)#. This system of equation
is not systematic whenb3m;b3

m because termb3b6 of order
b3

3 is considered, while three-mode couplingb3b3b3 is not.
Nevertheless, this is a partial resummation~referred to as
‘‘weakly nonlinear’’ in Figs. 4 and 5! which improves sig-
nificantly the evolution of modek53 while leaving mode
k56 almost unchanged with respect to the evolution
tained with Eq.~3.11!. It should be mentioned that a parti
resummation does not always lead to a similar improvem
as we will see in the following section.

We now consider initial condition~3.10!. The main plots
in Figs. 6 and 7 present the evolution of modesk53 andk
56, respectively, up to the nonconvergence regime. T
whole evolution of the modes is plotted in the insets. In t
case, linear equationsḃ35l(3)b3 andḃ65l(6)b6 provide
the consistent description of the initial stages, both for mo

FIG. 5. Comparison of the exact evolution of the scaled am
tude of modek56, against different approximations, using initi
condition~3.9! with both injection and rotation. See text for detai
02630
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k53 andk56, as shown in the figures. Sinceb3;b6, the
first proper correction to the linear evolution is the two-mo
coupling ~3.12! and not the ‘‘two-mode hierarchy’’~3.11!.
Equation ~3.12! is not a partial resummation now since

i-

FIG. 6. Comparison of the exact evolution of the scaled am
tude of modek53, against different approximations, using initi
condition ~3.10! with both rotation and injection. The main grap
displays the initial convergence regime and the inset the wh
evolution. See text for details.

FIG. 7. Comparison of the exact evolution of the scaled am
tude of modek56, against different approximations, using initi
condition ~3.10! with both rotation and injection. The main grap
displays the initial convergence regime and the inset the wh
evolution. See text for details.
8-9
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ALVAREZ-LACALLE et al. PHYSICAL REVIEW E 68, 026308 ~2003!
includes all the terms of orderb3
2 @41#. As shown in Figs. 6

and 7, it improves the linear evolution of modesk53 and
k56.

Besides the analysis indicated above, we have also in
tigated the resummation scheme introduced in Ref.@33#,
wherel(k)bk is substituted byḃk in the left hand side of
Eq. ~3.12!. In the present case this scheme does not prod
any significant improvement in the approximation during t
convergence regime, and the differences are extremely s
beyond that point.

From the previous results and from the comparison
tween the two different initial conditions, we can extract tw
main practical conclusions for the use of the weakly non
ear analysis. First, for a given initial condition we can pr
vide specific rules on the appropriate truncation scheme
the order of magnitude of the initial modes is equal (bm
;b for any m integer!, each order of the weakly nonlinea
expansion is self-consistent regarding the order of magnit
of the couplings involved, i.e. anl-mode coupling is of order
b l ~or « l 21) and therefore, each additional order of the e
pansion improves the approximation. In practice, one ha
deal with a reduced number of modes. Typically, a go
criterion is to include only the linearly unstable modes. T
stable modes will only play a role when activated throu
nonlinear couplings at later stages. It is worth remember
that when there is a finite injection rateQÞ0, a stable mode
at t50 does not necessarily remain stable during all the
ear evolution. When the amplitudes of modes are not u
form in the initial condition, the weakly nonlinear equatio
must be changed into a set of equations consistent with
corresponding hierarchy of amplitudes. To obtain these eq
tions all the modes and couplings which give a contribut
of order bp

r must be taken into account, regardless of
number of modes involved in the coupling, i.e., regardless
the order« of the expansion. As an example, the weak
nonlinear evolution of modek59, considering initial condi-
tion Eq. ~3.9!, makes the approximation worse unless all t
terms of orderb3

3 are included in the approximation.
The second main practical conclusion is that remarka

a few modes to low orders do approximate the exact solu
accurately, up to the nonconvergence regime. Particula
when the convergence condition is fulfilled along the wh
evolution, a low-order weakly nonlinear approximation pr
vides a satisfactory reduced description of the full nonlo
equations. In any case, when there is a small time window
nonconvergence, the approximation may still be remarka
good.

2. Configuration with rotation as the only destabilizing driving

We compare, finally, the weakly nonlinear approximati
with the exact numerical solution of the problem where
tation is the only destabilizing force and injection is n
present. Our main purpose is to obtain analytical inform
tion, using the weakly nonlinear analysis, about the interp
of rotation and viscosity contrast. This is an intrinsic nonl
ear effect, which already shows up in the first weakly no
linear correction of the linear dispersion relation@see Eq.
~2.33!#. The viscosities of the fluids have no influence in t
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initial mechanism of the instability~while densities must ful-
fill r1,r2). The lack of injection makes the linear evolutio
a simple exponential growth~or decay! independent of vis-
cosity contrastA. We will study the two limiting cases: high
est viscosity contrast,A51, and lowest viscosity contras
A50. We also haveV* 51 by our definition of parameter
and takeB051/45, which makesk53 the most unstable
mode during the whole linear evolution.

The numerical simulations of the exact evolution for v
cosity contrastsA50 andA51 are presented in Fig. 8. Th
initial condition is set by Eq.~3.10!. The interfaces that do
not verify the convergence condition are indicated again w
dotted lines. The evolution of the interfaces for the two v
ues of A are very similar in the convergence regime. T
beginning of the nonconvergence regime happens almo
the same time for both values ofA. The viscosity contrast
however, has a stronger effect in the later stages of the e
lution when the outward growing fingers have develop
The shape of the fingers and the width of their necks dep
strongly on the viscosity contrast. In particular, the width
the finger necks are significantly smaller forA50.

We present in Figs. 9 and 10 the evolution of modek
53 andk56, respectively, for both viscosity contrasts a
initial condition ~3.10!. Following the discussion of the pre
ceding section on the influence of the hierarchy of modes
the nonlinear approximation, the linear dispersion relat
describes the initial stages correctly and two-mode coup
equation~2.33! ~‘‘weakly nonlinear’’ in the figures! improves

FIG. 8. Numerical simulation of the problem with rotation as t
only destabilizing force. The upper evolution corresponds toA50
and the lower toA51. The initial condition in both cases is Eq
~3.10!. Snapshots in intervalt/t50 to t/t50.93, separated by
Dt/t50.133. See text for more details.
8-10
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SYSTEMATIC WEAKLY NONLINEAR ANALYSIS OF . . . PHYSICAL REVIEW E 68, 026308 ~2003!
the linear evolution, including only modesk53,6.
Observing Figs. 9 and 10, we see that modek53 is al-

ways the largest mode and its linear approximation is be
for A50 than forA51. Actually, the linear evolution and

FIG. 9. Comparison of the exact evolution of the scaled am
tude of modek53, against different approximations, using initi
condition ~3.10! with rotation as the only destabilizing force. Th
end of the convergence regime is indicated by the vertical line.
inset is an enlargement of the main graph in the weakly nonlin
regime. See text for more details.

FIG. 10. Comparison of the exact evolution of the scaled a
plitude of modek56, against different approximations, using in
tial condition ~3.10! with rotation as the only destabilizing force
The end of the convergence regime is indicated by the vertical
The inset is an enlargement of the main graph in the weakly n
linear regime. See text for more details.
02630
er

the exactA50 solution are visually indistinguishable in th
convergence regime~inset of Fig. 9!. This comes from the
fact that the linear evolution does not depend onA and is
therefore well suited to approximate an evolution where v
cosity contrastA50 eliminates all the terms depending onA.

The first weakly nonlinear approximation does depend
A: In the two casesA50 andA51, this approximation re-
produces the exact evolution in the convergence regime
the two modesk53 andk56 ~see insets!. As it is expected,
the weakly nonlinear approximation ofk53 for A50 fur-
ther improves the almost exact linear evolution ofk53. It is
remarkable that the two leading modes, which basically
fine the whole interface, are obtained accurately in the c
vergence regime using only the first nonlinear approximat

From Eq. ~2.33! we see howA modifies the effect of
rotation at the nonlinear level. For low viscosity contrast t
stabilizing role of rotation, for instance, becomes less eff
tive. We thus conclude that the coupling of viscosity contr
and rotation in the first order of approximation has the i
portant effect of making low-viscosity-contrast interfac
more unstable. This prediction of the weakly nonline
analysis is confirmed in Figs. 9 and 10. The amplitude
modesk53 andk56 is always larger in the caseA50. The
effect of the first nonlinear coupling is persistent along t
whole evolution, even in the nonconvergent regime.

This result has also been confirmed studying the ex
evolution and the weakly nonlinear approximation of mod
k53,6, for bothA50 andA51, with the initial condition

f ~v,0!5vS 1.01
0.1

v3D , ~3.13!

where the modes follow a hierarchy of formb3m;b3
m . Fur-

thermore, the analysis also shows that the partial resum
tion Eq.~3.12! worsens the approximation obtained with E
~3.11! in the present configuration, in contrast with the im
provement obtained in the preceding subsection.

IV. CONCLUSION AND PERSPECTIVES

We have extended to radial geometry the system
scheme discussed in Ref.@33#, to derive successive orders o
mode couplings in the weakly nonlinear regime of t
Saffman-Taylor problem. We have found that the nonline
expansion converges uniformly in the radial geometry wh
everr 21r f

2 ,2R2 is fulfilled at every point of the interface
We have tested the weakly nonlinear approach against e
solutions with zero surface tension and numerical integra
of the full problem in several representative situations. T
comparison is satisfactory in general, as in the channel
ometry. Difficulties in the approach appear only in classes
solutions which exhibit the ill posedness of the zero surfa
tension problem in the form of finite-time cusp singularitie
The small surface tension region is known to be a very d
cate limit which can be studied perturbatively until times
order one, well into the highly nonlinear regime@16#. One of
the advantages of the present scheme, though, is that it
be used for arbitrarily large surface tension, which is gen
cally relevant to physical situations. In this case, the meth
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ALVAREZ-LACALLE et al. PHYSICAL REVIEW E 68, 026308 ~2003!
provides an accurate and controlled analytical approxima
of the dynamics.

The explicit knowledge of the successive orders of
approximation and of the convergence criterion will be p
ticularly useful in morphologically stable arrangements s
ject to external perturbations. For instance, our schem
relevant to work out the systematic nonlinear, nonlocal ter
in the problem of fluid invasion of random media@34,35# if it
is ever extended to radial geometry.

We have shown that one of the specific features of
radial geometry, with no counterpart in the channel geo
etry, is the fact that an appropriate combination of the sta
lizing effect of rotation and the destabilizing effect of inje
tion can yield situations where the interface is initia
unstable and yet, the weakly nonlinear analysis is useful
ing the whole evolution. The weakly nonlinear analysis giv
rise to a reduced description of the whole Saffman-Tay
dynamics in terms of ordinary differential equations, va
when the convergence criterion is fulfilled at all times.

We have also shown that the weakly nonlinear analy
can provide useful and nonperturbative information in
case when rotation is the unique destabilizing force. Us
the first weakly nonlinear correction, we have demonstra
that the main nonlinear coupling betweenA andV is stabi-
lizing. This shows that the low-viscosity-contrast case~e.g.,
two similar liquids in the cell! is more unstable than th
high-viscosity-contrast case~e.g., one liquid inside and ai
outside!. This result has been confirmed numerically usi
viscosity contrastsA50 andA51.
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APPENDIX: PROOF OF THE CONVERGENCE
CONDITION OF THE NONLINEAR EXPANSION

In order to obtain the different orders of the mod
coupling equation, we have carried out two power series
pansions. First, we have expanded the inverse of the den
nator in Eqs. ~2.1! and ~2.2!, which corresponds to the
expansion of the average velocity and second, we have
panded the inverse of the denominator of curvature~2.15!. If
both expansions are uniformly convergent then Eq.~2.8! is
also a uniformly convergent series.

Written in terms of the nonscaled variables, the conv
gence condition for the curvature is

r 21r f
2 ,2R2, ~A1!

at every point of the interface. The convergence condition
the average velocity is
02630
n

e
-
-
is
s

e
-
i-

r-
s
r

is
e
g
d

-
.
i-
rk
h

x-
i-

x-

r-

r

F r ~f1!1r ~f2!

2 G2

1F r ~f1!2r ~f2!

2 tanS f12f2

2 D G 2

,2R2 ~A2!

for any two pointsf1 andf2 considered.
Our purpose is to demonstrate that Eqs.~A1! and Eqs.

~A2! are fully equivalent and thus, Eq.~A1! provides the
necessary and sufficient convergence condition. First, i
clear that Eq.~A2! reproduces Eq.~A1! when f15f2.
Therefore, it remains to be proved that condition~A1! im-
plies Eq.~A2!. Defining

Z~f1 ,f2!5F r ~f1!1r ~f2!

2 G2

1F r ~f1!2r ~f2!

2 tanS f12f2

2 D G 2

,

~A3!

Eq. ~A1! will imply Eq. ~A2! if and only if any extreme ofZ
with f1Þf2 is smaller or equal to the maximum ofr 2

1r f
2 for any value of f, i.e., Max„Z(f1 ,f2Þf1)…

<Max(r 21r f
2 ).

To simplify the notation we use the following definition

r̄ 5
r ~f1!1r ~f2!

2
, r̄ f5

r f1
1r f2

2
, D5

r ~f1!2r ~f2!

2
,

d5
r f1

2r f2

2
. ~A4!

We also writer (f1)[r 1 , r (f2)[r 2, and taker 1>r 2 with-
out loss of generality and henceD>0 ~taking this prescrip-
tion, the sign ofr̄ f and d cannot be fixeda priori!. Using
this notation,Z is written as

Z~f1 ,f2!5 r̄ 21
D2

tan2S f12f2

2 D . ~A5!

We differentiateZ with respect tof1 andf2 and set them
to zero to obtain information about the extremes:

Zf1
5r f1F r̄ 1

D

tan2S f12f2

2 D G
2

D2

tan3S f12f2

2 D cos2S f12f2

2 D 50, ~A6!

Zf2
5r f2F r̄ 2

D

tan2S f12f2

2 D G
1

D2

tan3S f12f2

2 D cos2S f12f2

2 D 50. ~A7!
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By adding both equations we obtain the first condition t
any extreme must fulfill:

tan2S f12f2

2 D52
dD

r̄ r̄ f

. ~A8!

Introducing this condition inZ we obtain the value of any
maxima ofZ:

Max~Z!5 r̄
r̄d2 r̄ fD

d
. ~A9!

~i! Let us inspect what happens ifd and r̄ f are both posi-
tive or both negative. In this case the following chain
properties holds:

Max~Z!5 r̄
r̄ udu2u r̄ fuD

udu
< r̄

r̄ udu20

udu

5 r̄ 2<r 1
2<Max~r 2!<Max~r 21r f

2 !. ~A10!

~ii ! To complete the demonstration we need to show th
if r̄ f andd have opposite signs, Max(Z)<Max(r 21r f

2 ) too.
We begin considering caseudu>u r̄ fu. The following in-
equalities hold:

Max~Z!5 r̄
r̄ udu1u r̄ fuD

udu
< r̄

r̄ udu1uduD
udu

< r̄ ~ r̄ 1D!<r 1
2

<Max~r 21r f
2 !. ~A11!

Next, we address caseudu,u r̄ fu. We now subtract Eqs.~A6!
and ~A7! to find

1

tan2S f12f2

2 D 5cos4S f12f2

2 D F d22 r̄ f
2

D r̄ f
G 2

~A12!
C

s

ite

A

02630
t

f

t,

and use this to write Max(Z) as

Max~Z!5 r̄ 21 r̄ f
2cos4S f12f2

2 D F12S d

r̄ f
D 2G 2

.

~A13!

Since the cosine function is bounded andudu,u r̄ fu, the fol-
lowing inequalities hold:

Max~Z!< r̄ 21 r̄ f
2F12S d

r̄ f
D 2G 2

< r̄ 21 r̄ f
2 . ~A14!

The question now is whether Max(r̄ 21 r̄ f
2)<Max(r 21r f

2 ).
We recall here thatr̄ 21 r̄ f

2 is a two-point function andr 2

1r f
2 is a one-point function. More explicitly, we have

r̄ 21 r̄ f
25

1

4
~r 1

21r 2
21r f1

2 1r f2

2 !1
1

2
~r 1r 21r f1

r f2
!.

~A15!

Using thata21b2>2ab in the second term of the rhs of Eq
~A15! we obtain

r̄ 21 r̄ f
2<

1

2
Max~r 21r f

2 !1
1

4
~r 1

21r 2
21r f1

2 1r f2

2 !

<Max~r 21r f
2 !, ~A16!

resulting in Max(Z)< r̄ 21 r̄ f
2<Max(r 21r f

2 ), as we wanted
to demonstrate.
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